MAE 4291/5230 Design Project

Rajesh Bhaskaran Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York

Section Instructor

- Dr. Rajesh Bhaskaran Swanson Director of Engineering Simulation Sibley School of Mechanical & Aerospace Engineering
- E-mail: <u>bhaskaran@cornell.edu</u>
- Office: 102 Rhodes Hall
- Office hours in Swanson Lab (163 Rhodes):
 TBA

Design Project

- Will use Computational Fluid Dynamics (CFD)
- CFD software to be used is ANSYS FLUENT
- Section will involve hands-on experience with FLUENT
- Reliable use of CFD software involves:
 - Strong understanding of *concepts*
 - Software skills
- Concepts:
 - Mathematical models, solution procedures, physical interpretation etc.

CFD vs. Analysis

- CFD can handle
 - Complex geometries
 - Complex physics
- Caveat: Garbage in, garbage out

Key Idea of CFD: Discretization

Software to be used

ANSYS FLUENT

- Solves the governing equations *approximately*
- Can be used to simulate various kinds of flow physics from low-speed incompressible to high-speed compressible
- One of the leading commercial CFD packages but no endorsement is implied
- ANSYS Workbench
 - Environment for pre- and post-processing
 - Pre-processing: Create geometry and mesh
 - Post-processing: Visualize and analyze results
- Software is evolving and is imperfect (so is the user)

Upcoming

- CFD solution process:
 - Geometry
 - Mesh
 - Setup (physics)
 - Solve
 - Results
- Fundamental CFD concepts will be discussed in the MW lectures in the next few weeks
- Will focus on geometry and mesh creation in the meantime

Cylinder Mesh

Example: Laminar Flow in a Pipe

• We'll later be solving the laminar developing flow in a pipe

- See tutorial at
 - http://confluence.cornell.edu/display/simulation

Laminar Flow in a Pipe

• Assume flow is axisymmetric. Hence, domain is rectangular.

• Sample grid for pipe

Laminar Flow in a Pipe: Tasks

- Create geometry
 - Rectangle
- Grid or mesh geometry
 - Uniform divisions
- Label boundaries
 - Inlet, Outlet etc.
 - Will later apply boundary conditions at the labeled boundaries

-	1	1 1		
1			1.000	100
			-	
-			100 B 100 B	

Pipe Flow: Inputs

L=8m

No. of divisions in axial direction NL=100 No. of divisions in radial direction NR=5

Geometry Components Hierarchy

- Geometry is usually referred to as "Solid Model"
 Vertex
- Hierarchy
 Volumes
 Areas (Faces)
 Edges
 Vertices
- Can control face mesh through edge mesh etc.

471 Rhodes Computer Classroom

- Request an account in 471 Rhodes from the following webpage: http://intranet.orie.cornell.edu
- An email will be sent to you providing you with your first use password. Please bring this password to the section meeting.

471 Rhodes Temporary Account

 username: monday password: 0ri3Temp (zero - r - i - three - capital T - e - m - p)

471 Rhodes Temporary Account #2

 username: tuesday password: Ori3Tues (zero - r - i - three - capital T - u - e - s)

Mapped Meshing

- Valid in 2D and 3D
- Generates regular meshes that generally lead to increased accuracy
- Can be used only in "regular" regions
- For 2D, works on areas with
 - 3 or 4 sides
 - 4 sides: Opposite sides have equal number of divisions
 - 3 sides: All sides must have an equal, even number of divisions

Mapped Meshing

• Example from "The finite element method and applications in engineering using ANSYS" by Madenci & Guven

Free mesh

Mapped mesh

Cornell University

Mapped Meshing

- Why the "mapped" in name?
 - A four-sided area with equal number of divisions on the opposite edges can be mapped to a regular mesh on a square

