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Let us assume that, as is ugual, dp/dx is given as a function of x, and,
guriher, that the velogity u is given as & function of y at some initial
yalne of X. Then we can deiermine numerically, from each u, the
associated B/ 3%, and with one of the known algorithms we can then
proceed. S¥€D by step, in the y-direction. A difficulty exists, however, in
various singulatities which appear on the fixed boundary. The simplest
case of the flow situations under discussion is that of water streaming
along a thin flat plate. Here a reduction in variabies is possible; we can
write 1 = F{y/x¥). By numerical integration of the resulting differential
equation we obtain an expression for the drag

D =11 % bV uplu;

(b breadth, ! length of the plate, u, velocity of the undisturbed water
relfative to the plate). The velocity profile is shown in [Fig. 8.1},

For practical purposes the most important result of these investiga-
tions is that in certain cases, and at & point whoily determined by the
external conditions, the flow separates from the wall {Fig. 8.2}, A fluid
layer which is set into rotation by friction at the wall thus pushes itself
out into the free fuid where, in causing a compiete trensformation of the
motion, it piays the same roje a5 a Helmnoltz surface of discontinuity. A
change in the coefficient of viscosity s produces a change in the
thickness of the vorlex tayer (this thickness being proportional to
Viul{puy), but evervthing else remains unchanged, so that one may, if
one so wishes, take the limit 4~ 0 and still obtain the same flow picture.

Separation can only occur if there is an increase in pressure along the
wall in the direction of the stream . ..

The amount of insight packed into this part of Prandt!’s paper
is staggering, and much of the present chapter will be spent filling
in the details, particularly with regard to the derivation of the

Fig. 8.1. Prandtl’s diagram of the velocity profile in the boundary layer
on a flat plate.
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boundary layer equations (88.2) and their solution in the case of
flow past a fiat plate (§8.3). E

flow of a finid of smali Viscosity must be dealt with ig two
interacting Patts, namely an invigeid flow obeying Helmholtz’s
voriex thesrems and thin boundary layers in which viscous effects :
are important. The mOoLion in the boundary layers i regulated by
the pressure gradient in the mainstream fiow but, on the other

hand, the character of the mainstream flow 18, in turn, markedly

Fig. 8.3, Fiow relative to ap impuisively moved circular cylinder ar two
different times {from Prandt 1903). Dashed Iines indicare lavers of
strong vorticity,
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Fig. 8.4. Prandtl's hand-operated fow tank.

water tank (Fig. 8.4). These include flow past a wall, flow past a
circular arc at zero incidence, and fiow past a circular cylinder, In
the iast case he demonstrates that even a very small amount of
suction into a slit on one side of the cylinder is enough 1o prevent
separation of the boundary layer on that side (Fig. 8. 55, He
notes, 100, & most mterestmg consequence of this, because ‘the
speed must decrease in the broadening aperture through which
the water flows, and therefore the pressure must rise’. A
substantial adverse pressure gradient will therefore be impressed
on the boundary {ayer on the corresponding side wall of the tank

7 T,

Fig, 8.5. Sketch of the finzl photograph in Prandtl's paper.
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{uppermost in Fig. £.5), and accordingly that boundary layer .
must be expected to separate. Such separation is indeed observed
{Fig. 8.5), and on this successful note the paper ends.T

For all its fundamental insights, the paper was scarcely agn
overnight success, and several years were to pass before Prandd’s
work became widely known outside Germany, let ajone fully |
appreciated.

Prior to 1900, ideal flow theory and viscous fow theory had
more or less gone their separate ways. On the inviscid side there
had been the great papers of Euler {1755) on the fundamental
equations, of Helmholtz {1858} on vortex motion and of Kelvin
(1869} on the circulation theorem. There had been success, toe,
in accounting for many of the most important propsrties of water
waves and sound waves. There was no doubt, then, that inviscid
fiow theory had its value. On the other hand, it was well known
that uniform flow past a ‘bluff body-—such as a circular
cylinder—bore little resemblance ar the rear of the body to the
predictions of inviscid fiow theary.

Viscous flow theory effectively began with the pioneering paper
of Stokes (1845}, who not only laid down the equations of motion
but obtained manv of the elementary exact sojutions that are fo
be found in Chapter 2. He followed this with another important
paper {1851) on what we would now cali low Reynolds number
fiow (§7.2), and when Hele-Shaw performed his remarkable
experiments with irrotational streamiine patterns (1898; see §7.7)
it was Stokes again who produced the reievant viscous theory.
The other pioneering work of the time was by Reynoids, notably
his beautiful experiments in 1883 on transition in fiow down a
pipe {§9.1).

Yet a major problem remained: that of accounting for the
motion of a fluid of small VISCosity past a solid body. Prandt was
not alone, of course, in addressing the matter. As early as 1872
Froude had conducted experiments on the drag on a thin flat
plate towed through still water, and had attributed that drag to

T Prandtl's paper is not excinsively concerned with boundary lavers; its subject is
the motion of a Buid with very small viscosity. He points out, guite early in the
paper, a wholly different way in which small viscosity can be significant, namely
through its cumulative effect, over 2 long time interval, in a region of closed
sircamiines {see §5.10}.
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the fayers of fluid in intense shear near the plate. He had
found, too, that the drag varied pot in proportion to the length /
of the plate, but at a siower rate. Lanchester later proposed,
independently of Prandtl, that the drag should be proportional to
#'"ui”. He alsc discussed separation, and affirmed correctly that
on a rotating cviinder in a uniform stream separation would be
defayed on one side and hastened on the other. He published ali
this and much more, in his Aerodynamics of 19G7, although just
how much earlier the work was done is not entirely clear.

If, nigh on a hundred vears later, the concept of a boundary
fayer and is separation seem to have been a long time in the
making, it 18 worth recalling that there were at least two factors
which clouded the issue at the time. First, there was substantial
uncertainty about whether the correct boundary condition was
one of no slip. It is one thing to find Stokes unsure about the
matter on pp. 96-99 of his 1845 paper, but it is quite another to
find this uncertainty continuing right up to the turn of the
century, with some investigators convinced of the no-ship
condition only in the case of slow Bow (see Goldstein 1969, and
pp. 676-680 of Goldstein 1938). Second, it was known that when
ideal flow theory predicts a negative value of the absotute
pressure at any point in a liquid, the formation of bubbles of
Vapour, known as cavitation, may be expected. Thus when
irrotational flow past sharp corners {e.g. Fig. 4.6(a)) bore littie
tesemblance to the actual flow of real liquids such as water, there
seemed to be a ready explanation: ideal fow theory implies an
mfinite speed at the corner, and by Bernoulli's theorem this
means an infinitely negative pressure. The onset of cavitation will
prevent such a singularity occurring but, in so doing, will give
rise to a different and ‘separated’ fow {see, e.g., Batchelor 1967,
PR- 497-306). In an essay om pp. I~5 of Rosenhead (1963),
Lighthill emphasizes how this obscured the possibility that there
might be a quite different {viscous) explanation for How
separation, one which would obtain, indeed, for liguids or gases
and whether the rigid boundary was sharp~cornered or smooth.
It was this quite different explanation, along with so much
eise, that Prandt! was eventually to squeeze into just a few
pages in 1904
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£.2. The steady 2-D boundary layer equations

We now derive the equations for a steady 2-D boundary laver
adjacent to & rigid wall y =

St 8u 1dp &u
gty Em s e R Vs, (8.1)
dx 3y odx )
Su Sy
“:;+gv‘= s {8.2)

p{x) being a function of x alone. The boundary conditions at the
wall are

w=y=0 aty =0, {8.3)

if the wall is at rest. The boundary layer flow must also match
with the inviscid mainstream in some appropriate mannet. This is
a matter of some subtiety, and we postpone it for the time being.
There are two key ideas involved in boundary layer theory.
The frst is that ¥ and v vary much more rapidly with y, the
coordinate normal to the boundary, than they do with x, the
coordinate paraliel to the boundary. Let Uj; denote some typical
value of u, and let u change by an amount of order U, over an
x~distance of order L, say. I & denotes a typical value of the
thickness of the boundary layer, our basic approximation is

.
ax |’

BOUNDARY
LAYER

TR e X
Fig. 8.6. The boundary layer.
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and this amounts, by making an order of magnitude estimate of
each term, 10 Up/8 5> U/L, e

&< L. (8.4)

Now, the exact 2-I3 equations are

Ju Ju 1ép Ezal’; B 8‘&)

_..~.4+ -m..-—-*:_——-—-—-—ﬂ— L
" ox U&y o 8% e ay?
s Bv 1 8p (c’ﬁzv &
—tY—m ==y '>+—~ » 'S
* 5x 3y p 8y Y\ ox2 ay?-’) (8.5)
Ju  ou
l—~—~+’—-__
dx oy

It follows at once from the last of these that 3u/dy is of order
Ug/L, and as v is zero at y = £ it follows that v is of order U,6/L
in the boundary laver. Thus v is much smaller than u. On
viewing the first two equations as expressions for 8p/dx and
3p/8y respectively it then follows that

2l 2|
! i

which means that in the boundary layer p is, to a first
approximation, & function of x alome. This justifies the use of
dp/dx, rather than 9p/dx, in egn (8.1}, and bears out Prandil’s
remark that ‘the pressure distribution of the free fluid will be
impressed on the transition layer’. But the most dramatic
simphification of eqn (8.5) arises on account of the following
estimates:

3u A Fu Uy
=0l Si=olz) (&6

In view of eqn (8.4} the term 3%/ 8x% is negligible compared with
the term 3%:/8y*, and with this major simplification of eqn (8.5)
we complete our derivation of eqn (8.1},

The other key idea involved in boundary layer theory is that
the rapid variation of & with y shouid be just sufficient to prevent
the viscous term from being negiigible, notwithstanding the small
coefficient of viscosity v. We may at once use this consideration
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to obtain an order of magnitude estimate of
thickness. Both non-linear ferms on the lef
{8.1) are of order US/L, and in order
comparable magnitude we require that

%N VU{)
L&

ie.

7 =OR™3), 8.7

The basic hypothesis (8.4} is evidently correct if the Reynolds .
number R=U,L/v is large; the whoje procedure is then -
self-consistent, and may indeed be put on a more formal basis
{(Exercise 8.1}.

full Navier—Stokes equations in a suitable sysiem of curvilinear
coordmates (x, y): the argument is much as before, save thar -
Spfdy is then comparable in magnitude with &p/dx, for
substantial pressure gradient in the y-direction is required to
balance the centrifugal effect of the fiow round the curved 4
surface (Rosenhead 1963, pp. 201 -203; Goldstein 1938, po
118120}, It is still the case that within the boundary layer p
essentially a function of x alone, for although the two pressure
gradients are comparable. actual charges in P across the
boundary layer are stili much smaller, by a factor O(&/L), than &
changes in p along the boundary, simply because the poundary .
fayer is so thin.

To actually determine the pressure distribution p{x}, suppose -
that {/{x} denotes the shp velocity that woujd arise, at y = (), if
the fuid were (mistakenly) treated as being entirely inviscid. The :
velocity at the ‘edge’ of the boundary layer in Fig. 8.6 will be :
almost equal to U(x), and by Bernoulli’s theorem P +ipU% will
be constant along a streamline at the edge of the boundary layer.
It follows that :

_idp  dU

P dx U-d;*; (88} '
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chus if U} increases with x the pressure p{x} decreases, and
yice versi.

We must finally address the matter of bow 1o ensure g ‘match’
between the flow velocity in the boundary fayer and that in the
inviscid mainstreanm. In the sections which follow we shall, to this
end, impase On the boundary tayer fiow the condition

w— Uix) asy/&—= =, (8.9}

& denoting @ typical measure of the boundary layer thickness,
pmportional to vi. Note that the fimiting process here is
yivi—re, noty— =, which would correspond to rocketing out of
the laboratory and into the heavens. This important distinction
may become clearcr with the following elementary example.

An clementary differential eguation with & ‘poundary inyer

Consider the following problem for a function u{y):

s u =1 u(@) =0, wl)=2, (8.10)

where ¢ denotes a small positive constant. The exact soiution 1§
gasily shown to be

(8.11)

-

i
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l
|

Fig. 8.7. The solution to eqn {8.10} for small €.
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Now, e ¢ is extremely small, and so is ™Y for O<y<1
unless v is of order £. The solution may therefore be
approximated, in two parts, by a ‘mainstream’

By =y 1,

and 2 ‘boundary layer’ adjacent to y =0 with thickness of order
£

Upr = 1— e ¢
These two expressions represent particular limits of the full
exact soiution (8.11), the first being obtained by letting £->0 at!
fixed v, and the second being obtained by letting g— 0 with y/e :
fixed. Notably,

ﬁm tegr = 1[11 Wpgy
yi g y3

and this is the equivalent statement to eqn (8.9) in this:
elementary examypie, :

It is instructive to take the analogy further by returning to egn |
(8.10) and proceeding on an approximate pasis from the outset, |
exploiting the fact that ¢ is small. If we neglect the term ey
entirely, on this basis, we obtain '

up=1, e ug=y+c,

and on making this satisfy the condition ug{1) =2 we obtain an
‘outer’ solution,

Uo{ ¥} =y + 1.

This procedure thus far is comparable with treating a high
Reynoids number flow as being entirely inviscid; the smal
parameter ¢ multiplies the highest derivative in the equation, and
by ignoring that ierm we lower the order of the system and ar
unable to satisfy all the boundary conditions. Here an ‘inner
solution, or boundary layer, is needed mear y =0, in order t
satisfy the boundary condition there. We may recogniz
variations of » in this boundary layer to be much more rapid tha
those elsewhere by changing the independent variable m eq
{8.10) to

¥Y=yle
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Wwith this scaling the previously negiigible second derivative
regains its importance:
1 & . 1 d .
E s - = >
2 d¥Y?  £dY
go that to a first approximation the inner solution w, satisfies
G du
d¥< 4y

{.

This is the eguivalent of the boundary layer equation {8.1), in
our simple example {and c¢f. Exercise £.1}. On making the inner
solution satisfy the boundary condition (0} = { we obtain

u=A(l—e"7),
and the matching condition

Hm U; = Lim Ug
0

Yoo y—r

determines that A = 1. Thus

{y—i—l as g — O for fixed v,
1 —gT¥e as £ — 0 for fixed y/ &,

in keeping with our deductions from the exact solution (8.11).

8.3. The boundary laver on =2 fiat plete

On inviscid theory a uniform stream approaching a flat plate at
zero angle of incidence is unaffected by the presence of the plate,
so U/{x) is a comstant. The boundary layer equations then reduce
e

] 3 cn
ui%va—imv%, (8.12}
cu ov
é‘;-l-"a;=@. {8.13)

We seek a similarity solution in which  is some function of the
single variable

n=ylglx) (8.14)
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‘This implies that the velocity profile at any distance x from the?
leading edge will be just a “stretched oye version of the velocit
profile at any other distance X, a8 in Fig. 2.14; thig 55 4 natural ;
assumption if, as we shall Suppose, the plate ig semi-infinite, from*
=810 x =, We hers take the similarity methog of §2.3 a little
further by not attempting to guess the function g{x}in advance;
we show instead how it can be left 10 emerge in & rational way ag
the calculation proceeds.

We first satisfy egn (8.13) by intmducing a stream functjon
¥{x, v} such that

“=3Y/8y, e —y/am (8.15) 7

I we write u in the form u = Uh{s) we may integrate to obtajn
il
Y o= Ug{x}f h(s) ds + k(x).
i

But we want the plate itself 1o be 5 streamiine, so that Ut

4y, at 7.=10; s0 k{x) =0, It is then MOre convenient o write Wi
in the form

Y= Uglx)f (), with f(0) =0, - (8.1)
whence

w=Uf'(n) 8.17)
and o

v=-2ta ~Ulgr+qr 20)
S
=Y - rig (8.18

Here, of course, J7 denotes F (1}, but g' denotes g'x). O
substituting for u and v i ean (8.12) we obtaip

y fp: f"ﬂ'
SUTT Se g — g L W,
g & &

which simplifies 1o

U i
fm -+ ig ﬁtﬁ - O.
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Gur aim is, of course, i obtain an ordimary differential
equation for f as a function of n. We must therefore choose
gg '—which would otherwise be a function of X—t0o be g constant.
Clearly the choice of v/IJ for this constant Is convenient in that it
nds the equation of all parameters of the problem, and
integrating gg' = v/ gives

. Y

%gz = E -+ d,
where £ is an arbitrary constant, Now, if & vanishes for some
value of x. certain flow quantities such ag

Buldy = Uf'/g

become singular, We clearly expect some such behaviour at the
ieading edge, if only because op ¥y =0 the velocity suddenly
changes from U in x <0 to zero in x> 4. We therefore choosa
d=0 to ensure that any such behaviour occurs at the leading
edge. Thus g(x) = 2vx/ ) and, to sum up, we have found that

= % = y )
Y= @vUs)f(n),  where n Ty 819

and
=0 {8.20}
This equation must be supplemented by the boundary conditions
O =f(=0 Fie)=1. {&21)

The first of these stems from egn (8.18), the second from egn
(8.17), and the third from the fact that & must tend to U, the
mainstream value, as we ieave the boundary layer (cf. eqn (8.9)).

The boundary value problem (8.26), (8.21) has to be solved
dumerically, and the results are shown in Fig. 8.8. The ratio w/t
I8 0.97 at =3 ang 0.999936 at n = 5. According to eqn (8.19),
therefore, the boundary layer thickness & is such that

§= o(fgf, (8.22)

as %ndicated in Fig. 2,14, As the boundary layer thickens the
borizontal stregs on the plate

du By S | F UG
I, = [—-—-— : _) = - = —H_) ” 27
g4\6}}) "o oo 3y IIFG #U(va fO (823
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Fig. 8.8. The velocity profile in the boundary layer on & flat plate. §

decreases with x. (FHere we have used eqns (6.7} and {6.9), with
of course, k= (0, 1, 03.3 '

Application of the theory to & finite fiar piate of length L

it is natural o hope that the above similarity solution wiil hold

reasonably well for a finite plate of length L, even if behaviour ¢
z different kind must be expected near

edge. Taking into account both the top
piate, we obtain for the drag

L.
D=2 f L dx = 2V2F(0)pUP LR 4, (8.2
(1]

where R = [UL/v. Thus £ 1s proportional to L%, rather than to
because the velocity gradients at the plate decresse with
corresponding to the thickening of the boundary taver. The dra
s proportional to v}, and vanishes as v 0. The numerical vaiu
of f'{0) is 0.4696.

The agreement betweer boundary layer theory and experimen
is very good, both in respect of the expression (8.24} for the dra
and in respect of the details of the velocity profile. Thi
agreement does break down, however, if the Reypolds number i




