2 Elementary viscous flow

2.1, Introduction

Steady fiow past a fixed aerofoil may seem at first to be wholly
accounted for by inviscid flow theory. The streamline pattern
seems right. and so does the velocity field. In particular, the fluid
1in contact with the aerofoil appears to slip along the boundary in
just the manner predicted by inviscid theory. Yet close inspection
reveals that there is in fact no such slip. Instead there is a very
thin boundary layer, across which the flow velocity undergoes a
smooth but rapid adjustment to precisely zero-~corresponding to
no slip—on the aerofoil itself (Fig. 2.1}. In this boundary layer
inviscid theory fails, and viscous effects are important, even
though they are negligible in the main part of the flow.

To see why this should be so we must first make precise what
we mean by the term ‘viscous’. To this end, consider the case of
simple shear flow, so that z = [u(y), 0, 0]. The fluid immediately
above some level y = constant exerts a stress, i.e. a force per unit
area of contact, on the fluid immediately below, and vice versa.
For an inviscid fluid this stress has no tangential component t,
but for a viscous fluid t is typically non-zero. In this book we

shall be concerned with Newronian viscous fluids, and in this case

the shear stress 7 is proportional to the velocity gradient du/dy,
i.e.

T=U, (2.1)

where p is a property of the fluid, calied the coefficient of
viscosity. Many real fluids, such as water or air, behave
according to eqn (2.1) over a wide range of conditions (although
there are many others, including paints and polymers, which are
non-Newtonian, and do not; see Tanner (1988)).
From a fluid dynamical point of view the so-called kinematic
viscosity
veplp (2.2)

Elementary viscous flow 27

yA

INVISCID
MAINSTREAM

v

Fig. 2.1. A boundary layer.

is often more significant than 2 itself, and some typical values of
v are given in Table 2.1. These values can vary quite
substantially with temperature, but throughout much of this book
we shall concentrate on a simple model of fluid flow in which u,
p, and v are all constant.

We can see now, in general terms, why viscous effects become
important in a boundary laver. The reason is that the velocity
gradients in a boundary layer are much larger than they are in
the main part of the flow, because a substantial change in
velocity is taking place across a very thin layer. In this way the
viscous stress (2.1) becomes significant in a boundary layer, even
though ¢ is small enough for viscous effects to be negligible
elsewhere in the flow.

But why are boundary layers so important that we begin this
chapter with them? The answer is that in certain circumstances
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Fig. 2.2. Viscous stresses in a simple shear flow.
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Table 2.1. Kinematic viscosity v {cm®s™") at 15°C.
Water 0.01 (¢ = .01 c.g.s. units)
Air 0.15 (p=0.0002 c.g.s. units)
Olive oif 1.0
Glycerine 18
Golden syrup/treacle ~1200 (v~ 200 at 27°C)

they may separate from the boundary, thus causing the whole flow
of a low-viscosity fluid to be quite different to that predicted by
inviscid theory.

Consider, for example, the flow of a low-viscosity fluid past a
circular cylinder. En the first instance it is natural to assume that
viscous effects will be negligible in the main part of the flow,
which will therefore be irrotational, by the argument of §1.5. If
we solve the problem of irrotational flow past a circular cylinder
(§4.5) we obtain the streamline pattern of Fig. 2.3(a). This
‘solution’ is not wholly satisfactory, for it predicts slip on the
surface of the cylinder. We might then suppose that a thin
viscous boundary layer intervenes to adjust the velocity smoothly
to zero on the cylinder iiself. But this turns out 10 be wishful
thinking; the observed flow of a low-viscosity fluid past a circular
cylinder is, instead, of an altogether different kind, with massive
separation of the boundary layer giving rise to a large
vorticity-filled wake (Fig. 2.3(b)).

Why does separation occur? The answer lies in the variation of
pressure p along the boundary, as predicted by inviscid theory.

(@) (b) :
Fig. 2.3. Flow past a circolar cylinder for («) an inviscid fiuid and (b} a
fluid of small viscosity.
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Fig. 2.4. Flow past an aerofoil: the fate of successive lines of fluid
particles.

In Fig. 2.3(g), inviscid theory predicts that p has a local
maximum at the forward stagnation point A, falls to a minimum
at B, then increases to a local maximum at C, with p 4 = pe. This
implies that between B and C there is a substantial increase in
pressure along the boundary in the direction of flow. It is this
severe adverse pressure gradient along the boundary which causes
the boundary layer to separate, for reasons which are cutlined in
§§8.1 and 8.6 (see especially Fig. 8.2.)

An aerofoil, on the other band, is deliberately designed to
avoid such large-scale separation, the key feature being its slowly
tapering rear. In Fig. 1.9, for example, the substantial fail in
pressure over the first 10% or so of the upper surface is followed
by a very gradual pressure rise over the remainder. For this
reason the boundary layer does not separate until close to the
trailing edge, and there is only a very narrow wake (Fig. 2.4).
This state of affairs persists as long as the angle of attack « is not
too large; if o is greater than a few degrees, the pressure rise
over the remainder of the upper surface is no longer gradual,

Fig. 2.5.

Separated flow past an aerofoil.
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large-scale separation takes place, and the aerofoil is said to be
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stalled, as in Fig, 2.5. This is the explanation for the sudden drop The Reynelds number

in Lift in Fig. 1.11.
The most important overall message of this introduction is that

Consider a viscous fluid in motion, and let U denote a typical

the behaviour of a fluid of small viscosity u may, on account of flow specd. Furtherl}lqre, let L denote 2 Ch.a racteris‘t ic length
boundary layer separation, be completely different to that of a scale of the flow. This is all somewhat subjective, but in dealing

(hypothetical} fluid of no viscosity at all. From a mathematical
point of view, what happens in the limit #—0 may be quite
different to what happens when p = 0.

2.2. The equations of viscous flow

S0 far we have considered the motion of fluids of small viscosity.
Yet there is more to the subject than this, including the opposite
extreme of very viscous flow (Chapter 7). It is time, then, to take
a more balanced—if brief—look at viscous flow as a whole.

The Navier-Stokes equations

Suppose that we have an incompressible Newtonian fluid of
constant density p and constant viscosity u. Its motion is
governed by the Navier--Stokes equationst

3 1
—E+(u-V)u=—~Vp+vV2u—z~g,
ot 4 (2.3)

Veu=10

These differ from the Euler equations (1.12) by virtue of the
viscous termm vV?m, where V° denotes the Laplace operator
3%[3x* + 32/ 8y* + 362"

The no-stip condition

Observations of real (i.e. viscous) fluid flow reveal that both
normal and tangential components of fluid velocity at a rigid
boundary must be equal to those of the boundary itself. Thus if
the boundary is at rest, =0 there. The condition on the
tangential component of velocity is known as the no-slip
condition, and it holds for a fluid of any viscosity v#0, no
matter how small v may be.

t The Navier-Stokes equations are derived from first principles in Chapter 6.

with the spin-down of a stirred cup of tea, for instance, 4 cm and
Sems™" would be reasonable choices for L and U, while 10m
and 100 ms™ would not. Having thus chosen a value for L and
for U we may form the quantity

R (2.4)

which is a phre number known as a Reyrolds number.
To see why R should be important, note that derivatives of the

“velocity components, such as du/3x, will typically be of order

U/L—assuming, that is, that the components of u change by
amounts of order U over distances of order L. Typically, these
derivatives will themselves change by amounts of order U/L over
distances of order L., so second derivatives such as &u/dx* will
be of order U/L”. In this way we obtain the following order of
magnitude estimates for two of the terms in eqn (2.3):

inertia term: |G - V)as] = O(U/ L),

) , ) {2.5)
viscous ferm: |vVou| = O(vU/L?).
Provided that these are correct we deduce that
|linertia term| ( U3/ L )
= = (R). 2.6
|viscous termy vU/1? &) (2.6)

The Reynolds number is important, then, because it can give a
rough indication of the relative magnitudes of two key terms in
the equations of motion (2.3). It is not surprising, therefore, that
high Reynolds number flows and low Reynolds number fows
have quite different general characteristics.

High Reynolds number flow

The case R > 1 corresponds to what we have hitherto called the
motion of a fluid of small viscosity. Equation (2.6) suggests that
viscous effects should on the whole be negligible, and flow past a
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thin aetofoil at small angle of attack provides just one example inner cylinder is stopped after a few revolutions, and the inner

whete this is indeed the case. Even then, however, viscous effects

cylinder is then rotated back through the correct number of turns

become important in thin boundary layers, where the unusually to its original position, a dyed blob of syrup, which has been
farge velocity gradients make the viscous term much farger thar greatly sheared in the meantime, will return almost exactly to its
the estimate in eqn (2.5). We show in §§8.1 and 8.2 that the original configuration as a concentrated blob (Fig. 2.6).

typical thickness & of such a boundary layer is given by
8/L=0O(R™%). (2.7

The larger the Reynolds number, then, the thinner the boundary
layer.

A large Reynolds number is necessary for inviscid theory to
apply over most of the flow field, but it is not sufficient. As we
have seen, boundary layer separation can lead to a quite different
state of affairs. A further complication at high Reynolds number
is that steady flows are often unsteble to small disturbances, and
may, as a result, become furbulent. 1t was in fact in this context
that Reynolds first employed the dimensionless parameter that
now bears his name (see §9.1).

Low Reynolds nomber flow

Consider a laboratory experiment in which goiden syrup occupies
the gap between two circular cylinders, the inner one rotating
and the outer one at rest. For reasonable rotation rates of the
inner cylinder the Reynolds number might be in the region of
107 or so; it will certainly be much less than 1. At such Reynolds
numbers there is no sign of turbulence, and the flow is extremely
well ordered.

The flow is so well ordered, in fact, that if the rotation of the

]_ c’lp
= 3
] ]

{2) (b) (©) (d) {e)

Fig. 2.6. The reversibility of a very viscous flow.

This near reversibility is characteristic of low Reynolds number
flows, and helps account, in fact, for the unusual swimming
techniques that are adopted by certain bioclogical micro-
organisms such as the Spermatozoa (§7.5).

2.3. Some simple viscous flows: the diffusion of vorticity

We now turn to some elementary exact solutions of the
Navier~Stokes equations. There is, in addition, a major theme
running through §8§2.3 and 2.4, and that theme is the wviscous
diffusion of vorticity, an important mechanism which was wholly
absent in Chapter 1, where v was zero.

Plane paraliel shear How

Suppose thaf a viscous fluid is moving so that relative to some set
of rectanguiar Cartesian coordinates

u=fuly, 1), 0, Gl (2.8)

Such a flow is termed a plane parallel shear flow. It automatically
satisfies V- w== {0, as u is independent of x, and in the absence of
gravityt the Navier—Stokes equations (2.3) become, in component

. form:
du 138p Fu
“é?=m“““a“;+$’;§;§,
p 2.9
w_%p_,
3y—8z

The pressure p is thus a function of x and ¢ only. But from eqn
{2.9) 9p/3x is equal o the difference between two terms which
are independent of x. Thus dp/3x must be a function of ¢ alonfa.
As we shall see shortly, there are important circumstances in
which this fact enables us to deduce that 3p/ox must be zero.

1 See footnote on p. 9.
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First, however, it is instructive to see how egn {2.9) may be
obtained by a simple and direct application of the expression
(2.1).

An ad hoc derivation of the equations of motion for 2 viscous
fluid in plane parallel shear flow

First note that in the absence of viscous forces the corresponding
Euler equation

Ju

ot

o

o (2.10)

may be deduced by considering an element of fluid of unit length
in the z-direction and of small, rectangular cross-section in the
x—y plane, with sides of length dx and &y (see Fig. 2.7}. The net
pressure force on the element in the x-direction is

=_op

24

plx) 8y — p(x + dx) Sy dx dy,

and this is equal to the product of the element’s mass p 06x 8y and
its acceleration

Du_au

Dt ar

ou

u
3x’

Q4 (y+8y)éx
oy

& plx+5x)dy

w2 (y)6x
oy

Fig. 2.7. The forces in the x-direction on a small rectangular biob in 2
plane parallel shear fow.
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which reduces simply to du/dr because u is independent of x.

In a similar manner we may use egn (2.1) to deduce that
viscous forces on the top and bottom of the element give rise to a
net contribution in the x-direction of

du
o

whence eqn (2.10) becomes modified to
u 3 Fu

e +
o™ e By

2

U
9x %= p— bx By,
¥ a}’z

ou
8x — u—
y+dy ay

(2.11)

i.e. to egn (2.9).

This equation is, of course, valid only for a very restricted class
of flows, but the brevity of the above derivation does have its
merits. In particular, it brings out rather clearly, via eqns (2.1)
and (2.11), why the viscous term in the equation of motion {2.3)
involves the second derivatives of the velocity field.

The flow due to an impulsively moved plane boundary

Suppose that viscous fluid lies at rest in the region 0 < y < o and
suppose that at ¢ = 0 the rigid boundary y = 0 is suddenly jerked
into motion in the x-direction with constant speed U. By virtue
of the no-slip condition the fluid slements in contact with the
boundary will immediately move with velocity U/, We wish to
find how the rest of the fluid responds.

It is natural to look for a flow of the form (2.8), and eqn (2.9)
then applics. We assume that the flow is being driven only by the
motion of the boundary, ie. not by any exterpally applied
pressure gradient. This experimental consideration corresponds
to asserting that the pressures at x = +w are equal, and as 3p/8x
is independent of x (so that p is a linear function of x) it follows
that dp/38x is zero.

The velocity u(y, t) thus satisfies the classical one-dimensional
diffusion equaticn

Su  Fu
ey o

o ay?
together with the initial condition
u(y, 0)=0,

(2.12)

y>0,
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and the boundary conditions s that

. Lo
w0, 0y=U, >0, e, 1y =0, (>0, ul"U[lm"—f e“”“ds] (2.14)
{13

Fia

e

This whole problem is in fact identical with the problem of the

. : ) .15 the solution of the problem, where n = y/ (ve)h.
spreading of heat through a thermaily conducting solid when iis The simple form of the initial and boundary conditions was
boundary temperature is suddenly raised from zero to som

essential to the success of the method. The underlying reason lies
constant. . . . ) in the nature of the similarity solution (2.14) itself. As its name
We may proceed most easily, on this occasion, by seeking 2

e ' - p ) implies, the velocity profiles u(y) are, at different times, all
sz.'?ularzty solutzc-m. We postpone a more rational discussion of geometrically similar. At time ¢, the velocity u is a function of
this method until §8.3; for the time being we simply observe thal

el ; - y/{vt})}; at a Tater time 1, the velocity u is the same function of
the equation Js unchfinged by the tragsformataon of vaqab%es y/(vi)b All that happens as time goes on is that the velocity
Y= ay, 1= a’t, o being a constant. This suggests the possibility

: X " ' profile becomes stretched out, as indicated in Fig. 2.8. We would
that there are solutions to eqn (2.12) which are functions of y ané 4 expect this to be the case if, for instance, an upper boundary
¢ simply through the single combination y/e2, for this ‘similarity

. ] .~ were present, and the solution is, indeed, not then of similarity
variable would itself be unchanged by such a transformation,

. - " form {see eqn (2.21)).
Inspection of eqn (2.12) suggests that it may be THoTe convenient At time ¢ the effects of the motion of the plane boundary are
stiil to take y/(v)? as the similarity variable. Thus if we try largely confined to a distance of order (v)} from the boun dary; u

u=f(n) where 17 = y/(ve)} (2.13) is less than 1% of U at y =4(vt):. In this way viscous effects
’ ’ : gradually communicate the motion of the boundary to the whole
so that fuid.

Su an y A more fundamental way of viewing this process, open to
“é“i!“_:f '(ﬁ)‘a‘t‘:—f '(7?)5;%, considerable generalization, is in terms of the diffusion of
vorticity. The vorticity is

ou_ .. . an 1
ERE A b KO b v w=-__U (2.15)

i
3¢z

SOy @it

we obtain, from eqn (2.12),
f*+dnfr =0,

Integrating, (vi)'”
fr — Be_”m,

whence

]
F=A ~+~BJ e ds,

G

7
—5 [/

(®)
Fig, 2.8. The diffusion of vorticity from a plane boundary suddenly
moved with velocity U. The solid line indicates the velocity profile at
some early time (g) and some later time (b); the shading indicates the
f(o0) =0, F(O)=U, region of significant vorticity.

where A and B are constants of integration, to be determineg
from the initial and boundary conditions. By virtue of eqn (2.13)
these reduce to

.

-

RGN

.

-

=

A

o
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and this is exponentially small beyond a distance of order (vt}
from the boundary. The spreading of vorticity by viscous actior
thus smooths out what was, initially, a vortex sheet, ie. a
mfinite concentration of vorticity at the boundary (y =0, r—s 0
with none elsewhere (y >0, 1— 03,

Finally we may state these broad conclusions in a shightl
different way. Vorticity diffuses a distance of order {(vt)? in tim
¢. Equivalently, the tme taken for vorticity to diffuse a distance o
order L is of the order

viscous diffusion time = O(L%/v). (2.16

Steady flow under gravity down an inclined plane

This next solution of the Navier—Stokes equations serves to make
one or twe elementary points about technique,

H may be argued that the key step in solving any flow probilem,
having decided on a sensible coordinate system, is to decide the
number of independent variables (e.g. x,y,2 1) on which 4
depends, and the rule is ‘the fewer, the better.

In the present probiem @ is zero on y=0 (see Fig. 2.9), by
virtue of the no-slip condition, so # must depend on y. In the
absence of any a priori reason why # needs to depend or
anything else we examine the possibility that there is 3
two-dimensional  steady flow solution in which m=
fu(x), v(y), 0.

Now, it is only common sense in any problem to fon to e
incompressibility condition at an early stage, for of the two

Fig, 2.9. Steady flow of a viscous fluid down an inclined plane.
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equations (2.3) it is by far the simpler. In the present instance it
tells us immediately that

dv/dy =0,

i.e. that v is a constant. But v=0 on y=0, so v is zero
everywhere.,

~ Substituting = =[u(y), 0,0] into the momentum equation
{2.3), with the gravitational body force included, we obtain

0= 1ap+vd2u+gsinw

= VS ,
pox dy (2.17)
138p

O=~—-a—y — g COos a.
o

Integrating the second of these we find

p = —pgy cos a +f(x),

where f(x) is an arbitrary function of x.

Now, the free surface must be y=h, where % is a constant,
because all the streamlines are parallel to the plane. At this free
surface the tangential stress must be zero and the pressure p must
be equal to atmospheric pressure p, (see Exercise 6.3), so
(2.18}

du
= and p—=0 aty =h,
£ =Po dy

by virtue of eqn (2.1). Consequently,

P —po=pglh —y)eos a,
whence dp/dx is zero. Equation (2.17) then reduces to
d*u _
Va";“z* = —gsma,
and we may easily integrate this twice, applying the boundary
conditions
du_

0 at y=h,
dy ab ¥

u=90 at ye=0, u
to obtain

U= é% y(2h — y)sin o 2.19)
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The velocity profile is therefore parabolic, as shown in Fig, 2.9.
The volume flux down the plane, per unmit length in the
z-direction, is

Anether example of vorticity diffusion

Consider the problem in Fig. 2.10, in which a lower rigid
boundary y = 0 is suddenly moved with speed U, while an upper
rigid boundary to the fluid, Yy =h, is held at rest. As in an earlier
subsection, we argue that u= [u(y, 1), 0, 0] will satisfy eqn
(2.12):

du  Fu

a oy

subject to the initial condition
u(y, 0y =0,

but this time the boundary conditions will be
ulQ, £)=U, u(h, ty=20,

The equation is homogeneous, but the boundary conditions
are not. Before using the method of separation of variables and

(2.20)

O<y<h:

>0, t>0.

%
(@) r iy (b) 1 =h%y
Fig. 2.38. Flow between two rigid boundaties, one suddenly moved

with speed U and one held fixed. Shading indicates regions of significant
vorticity.

—mbU
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Fourier series we therefore reformulate the probiem by first
seeking a steady solution that satisfies the boundary conditions;
this is clearly U(1 —y/h). We therefore write

B e U(lwy/h)+u,,

where
| o, Fu
ar ey
iy, 0) = ~U(1 ~y/h), O0<y<h,
{0, ) =190, >0, uilh, )=0, >0

The boundary conditions are now homogeneous. By the

method of separation of variables we find that the functions
exp(—n’m*ve/hDsin(ny /h),  m=1,2, . ...

all satisfy the equation for i, and the boundary conditions for u,
at y=0,k. None of these individually satisfies the initial
condition for u;, but by writing
= > A, exp(—n’m*vi/h*)sin(nmy /h),
el
we may use Fourier theory to determine the A, such that

2 Apsin(aay/hy = —U(l - y/h)  in 0<y<h,
n=1

thus satisfying the initial condition. In this way we find

2 h
A, = Ef Ul —y/hysin(nmy/h) dy = —2U/nx,
o
and the solution is therefore
2U'w 1 .2 AN
u(y, )=U(1~y/h) i > ;exp(—n a“vt/hysin(amny [h).
=l

(2.21)

The main feature of this solution is that for times t= 03 v (cf,
egn (2.16)) the flow has almost reached its steady state, as in Fig.
2.16(b), and the vorticity is almost distributed uniformly
throughout the fluid.
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2.4, Flow with circular streamlines

The Navier—Stokes equations are

3 1
£+(a-V)u=—~;Vp+vV2u,
V-u=1(,

and when written out in cylindrical polar coordinates they
becorie

%%q“f' (3 Vg + 20 “;’:g%—% v(Vzue '?%%Lg“;;)
‘?;z»iw (s - V), =— %5E+ v, ¢-2)
where
@ D=ty 2

(see eqn (A.35)).
Note the ‘extra’ terms that arise; the r-component of (o - Vuis

not {(u - V)u,, for instance, but (u - Viu, — ul/r instead. This kind
of thing occurs because u = e, + Ugeq + U €., and some of the

unit vectors invelved change with 8:
P 2.23
a6 e g7 @2)

(see eqn (A.29)). When (u-V)u and vV are expanded
carefully using these expressions they may be seen to yield eqn:

(2.22).
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Taking explicit account of the change in direction of unit
vectors may alternatively be avoided by use of the identities

(g - Vie=(VAau)ru+VEed), (2.24)
Vu=V(V-u)~VA(YAu). (2.25)
For this purpose we recall |
e, re; e,
vausl|2 2 2 229
W, Ty U,

{see Exercise 2.13).

The diiferential equation for circelar flow

Consider solutions to the Navier—Stokes equations of the form
(2.27)

so that the streamlines are circular. The incompressibility

u = uy(r, i)eg,

~ condition V- u =0 is automatically satisfied for any flow of the

form (2.27).
Rather than use the remaining equations in the ready-made
form (2.22) it is instructive to derive them, for the flow (2.27),

. using the expressions (2.23). Thus

Ho O updee  uj
. I e s DD e S s e 2_2
(u-Vu 30 fug(r, tieq) 36 e, (2.28)
" while 7
F 18 1 & &
v Vig= (§?+;§;+;55@+5;§)[%(h Hes],
and
IEAWRRE R N A=
a0l = 5g Mgy ) = 7 ggltee) = ~Ja o
50
h 18
szumv( a;{’ ;mﬁ-%)ee (2.29)
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When = uy(r, t)e, the Navier—-Stokes equations therefore
reduce to

_us_ _13p
r por’
%&_iﬁaw(ﬁ%g%_ﬁg)
ot pr a8 or* rar )
oo 13

p 8z

as we might have deduced more quickly from ean {2.22).

Now, ug is a function of r and ¢ only, so from the second
equation the same must be true of 3p/36, so 3p/36 = P(r, 1),
say. Integrating:

p=PF 08 +1(r, 1),

as Op/éz=0. We conclude that P(r, 7y =10, for otherwise p
would be a multivalued function of position (different at 8= (-
and at ¢ = 27, say). Thus

f?i’f,‘f: V(azuo + 1 31, ua)

3t ror

3r* oy (2:30)

is the evolution equation for a viscous flow with u = tg(r, 1)e,.

Steady flow between rotating cylinders

For steady flow we have

5 dzug due

@ g T he=0
with general solution
B
Uy =Ar+w';-. (2.31):

it Fhe Huid .occupies the gap n <r=<r, between two circular
cylinders which rotate with angular velocities Q, and ©,, then we
may apply the no-slip condition at each cylinder to obtain
Q3 — Q2 Q; — 2,572
A= ; 2] 1, B=( I 2)12' (232)

r3— sl e
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The most interesting thing about this flow is the manner in
which it becomes unstable if €2, is too large, so that superbly
regular and axisymmetric Taylor wvortices appear (see §9.4,
especially Fig. 9.8).

Spin-down in am infinitely long circular eylinder

Suppose viscous fluid occupies the region r <a within a circular
cylinder of radius e, and suppose that both cylinder and fluid are
mitially rotating with uniform angular velocity £, so that

iy = Gr, r=a, t=4.

Suppose that the cylinder is then suddenly brought to rest. We
need to solve :

m%lig _ V(32u9 1 aug ue)
3  \arr rar 2

with the above initial condition and the boundary condition

by =190 atr=a, >0,

The preblem may be tackled in a Fourier-series type manner,
as for egn {2.21), but the separable solutions now involve Bessel
functions, and

i A.ria vt
ug(r, £y = —2Qa 2 Wexp(wlﬁ ;;) (2.33)
Here A, denote the positive values of A at which J;{A) =0, and J,
denotes the Bessel function of order k. All the terms of the series
decay rapidly with ¢; the one that survives longest is the first one,
and A;=3.83. The ‘spin-down’ process is therefore well under
way in a time of order @*/vAZ, i.e. in the classic viscous diffusion
time {2.16).
if we apply this to a stirred cup of tea, with a=4cm and
v=107%cm®s™" for water, we obtain a ‘spin-down’ time of about
2 minutes. This is much too long; casual observation suggests
that uy drops to about 1/e of its original value in about 15s. The
discrepancy arises because straightforward diffusion of (negative)
vorticity from the side walls is not the key process by which a
stirred cup of tea comes to rest; the bottom of the cup—wholly
absent in the present model—plays a crucial role (see Fig. 5.6.)
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2
)

Fig. 2.11. “Spin-down’

in an infinitely long circular cylinder. Initially

there is vorticity 2Q everywhere, but negative vorticity diffuses inward

from the stationary boundary r=a, so that the
significant vorticity shrinks with time.

Viscous decay of a line vortex

The line vortex

where I, is a constant, has zero
vorticity at r=0. In a viscous fluid, then, this flow does not
persist; the vorticity diffuses outward as time goes on.

{shaded) region of

(2.34).

vorticity in »>0 but infinite

To examine this process it is convenient to take the circulation

E(r, 6) = 2mrug(r, 1)

as the dependent variable of the
we then obtain

(2.35)
problem. In place of eqn (2.30)

arwv(azr gar) 5 36
3 \art rar) (2.36)
The initial condition is

f{r, O) = FG'

We require u, finite at 7 = 0 at any later time, so

G, 1y =0, >4
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This problem is very similar to that in which a plane rigid
boundary is jerked inte motion (see egn (2.14)); we leave it as an
exercise to seek, as in that case, a similarity solution in which

F=f(n),

where 17 = r/(vt)3.

"In this way we may discover that

= }-.0(1 . e—r21’4w)!

SO

I 2
= e (] e gAY 2.37)
Ho 2frr( ¢ ) ¢

At distances greater than about (4v1): from the axis the
circulation is almost unaltered, because very little vorticity has
yet diffused that far out. At small distances from the axis,
however, where r<<(4w)?, the flow is no longer remotely
irrotational; indeed

L B (4vr)}, (2.38)
Brave

Uy

which corresponds to almost uniform rotation with angu?ar
velocity I'y/8srve. The intensity of the vortex thus decreases with
time as the ‘core’ spreads radially outward (Fig. 2.12).

(b}

(a)

Fig. 2.52. The viscous diffusion of a vortex.
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y
2.5. The convection and diffusion of vorticity j \
Low

If we take the curl of the momentum equation (2.3) we obtain

5 :
5? + (1 Voo = (- Vu + v Vo, (2.39
(cf. eqn (1.25)), and in the case of a 2-D flow this reduces to I O(vi)'™
Bw Fo o >
"5;4“(& . V)w :'V(g;i*"{-“é;z') (240] *

In Chapter 1 we set the viscosity v to zero from the outset; o Fig. 2.13. Flow towards a 2-D stagnation poin

was then conserved by individual fluid elements in 2.3 flow, . )
Changes in @ at a particular point in space took place only by the 6 = O(v/a)?. In this boundary layer there is a steady state
convection of vorticity from elsewhere in the fluid, and this balance between the viscous diffusion of vorticity from the wall
process is represented by the second term in eqn (2.40). In $§2.7 and the convection of vorticity towards the wall by the ﬁqw. "_I“hus
and 2.4, on the other hand, we looked at some simple viscous if v decreases the diffusive effect is weak‘enecf, while if o
flow problems in which the term (#-V)w happened to be increases the convective effect is enhanced; in either case the
identically zero; in other words, we isolated diffusion of vorticity boundary layer becomes thinner.
as a mechanism, this being represented by the third term in eqn
{2.401. High Reynolds nomber flow past a flat plate

In general, there is both diffusion and convection of vorticity in

. 1 iform flow past a flat plate with a leading edge, as in Fig. 2.14,
a viscous fluid flow, and we end this chapter with two examples, {1 AGorm p P g cog

there is no flow compenent convecting vorticity towards the plate
. to counter the diffusion of vorticity from it, so the boundary layer
2-D) flow near a stagnation point -becomes progressively thicker with downstream distance x. (In

. . . . less formal terms, the layers of fluid closest to the centreline are
The main features of this exact solution of the Navier—Stokes ’ Y

e ; - .. the first to be slowed down as they pass the leading edge,
equations (Exercise 2.14) are as follows. First, there is an inviscid and they in turn gradually slow down the layers of fluid which are
‘mainstream’ fow

: further away.)
i = o, U= —ay, (2.41)

where @ is a positive constant. This fails to satisfy the no-slip
condition at the rigid boundary y =0, but the mainstream flow
speed « |x| increases with distance |x| along the boundary. By
Bernoulli’s theorem, the mainstream pressure p decreases with
distance along the boundary in the flow direction (Fig. 2.13), s0
we may hope for a thin, unseparated boundary layer which

adjusts the velocity to satisfy the no-slip condition (see §2.1).

This is indeed the case, as Exercise 2.14 shows, and the boundary %
layer, in which all the vorticity is concentrated, has thickness Fig. 2.14. The boundary layer on a flat plate.

i 4
w
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We may estimate the boundary layer thickness & by a simpl. Rewrite this problem in dimensionless form by using the dimensioniess
argument based on the related problem in which the flat plate i iables
instead suddenly pulled to the left, with speed ¢/ » through flui
which was previously at rest. From Fig. 2.8 we infer that at time .

§ = : " - : . ) Ive the problem, show
after the plate is moved vorticity will have diffused out a distancig places of x, u, and p. Without Z“cmg*zi t{isoavean d % only in the
of order (ve)?. But by this time the leading edge of the plate wilthat the streamline pattern can a cpe at equal R;aynoids numbers are
have moved a distance x=Ur to the Iofy. It follows that ag?Ombina_*i";; R,m,gz’l v, so that flows at eq
distance x downstream from the leading edge there will pgeometncally sumiar. , . daries
significant vorticity a distance of order 2.3, (i) Viscous fluid flows betweeq two statlonag; r;sg}l;cév?(:;; a
. 'y = it/ under a constant pressure gradient P = —dp/dx.

&~ (vx/ U (.42

from the plate, but not beyond.

This crude estimate for the growth of the boundary layer wit} . . ; ircular cross-section r =g
downstream distance x in Fig. 2.14 is indeed conﬁrmec!y by the (iD) V;scotas tﬁ uﬁsic:?gi%v;;tappipig/;f‘;;gw that
appropriate solution of the boundary layer equations (sec §8.3) ander a constant p
For a plate of finite length L the thickness (2.42) is in keeping v = i (@* - 1), u, =y =0,
with the claim (2.7) and is small compared with L at al points of T odp

the plate i R = UL/v>1. [These are called Foiseuille flows (Fig. 2.15), after the phy§iciart1 l‘:’_hﬁ
first studied (ii} in connection with blood flow. '1_“he;r mstabnhtélzmslgo :

Exercises Reynoids' number constit-utes one of the most important pro

fluid dynamics (see §5.1}.] ' fow. onc

/6 i i s fluids of the same density p flow,
i i j j . Two Incompressible VISC_OU‘;_ ed plane making an angle o with the
(i} flow past the wing of a jumbo jet at 150 ms (roughly half the op top of the other, down an inclined p Buid s of depth /i
speed of sound); horizontal. Their viscosities are g, and g, the lower flui

and the upper fluid is of depth 4,. Show that

. Lo gsina

(i) a thick tayer of golden syrup draining off spoon; u(y)=[{h: + A2)y — 3y°] v

1

x =x/a, ' =ulU,  p' =p/pl’

P 2 =
= (h—y7), v w=()
u 2#( ¥

2.1, Give an order of magnitude estimate of the Reynolds number for:

(i} the experiment in §1.1 with, say, L.=2cm and U =5 om 574

) ?g*ipi;f?gqio::ﬁefith il tength of 107 em swimming ai: so that the velocity of the lower fluid u,(y) is dependent on the depth
i . §

 h,, but not the viscosity, of the upper fluid. Why is this?
Give an order of magnitude estimate of the thickness of the
boundary layer in case (i).

2.2, The problem of 2-D steady viscous flow past a circular cylinder of
radius g involves finding a velocity field g = fulx, v}, v(x, ¥), 0} whick:
satisfies '

Low

1
(a-V)u=~;;Vp+vV2u, Veu=0, r

together with the boundary conditions

v

#=0 onx’+y*=g% u—{U,0,0) asx? 4y o, . ¥ig. 2.15.  Poiscuilie flow.
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2.5, Viscous fluid is at 1est in a two-dimension] channel between { (there being no applied pressure gradient}, and by seeking a solution of

] L W
stationary Hgld. walls y = +h For =0 a constant pressure gradieﬂthe form )
F=—dp/dx is mmposed. Show that uly, 1) satisfies : u=Rif(y)e],

élfm Viz.tf f where & denotes ‘real part of’, show that
o 3})2 Ie] '

o [Jo kY -

and give suitable initial and boundary conditions. Find u(y, &) in th M )= U costhy @

form of 4 Fourier series, and show that the flow approximates to steagwhere k = (w/ 2")%'

channel flow when ¢ v, " Sketch the velocity profile at some time ¢, and note that there is hardly
2.6, Viscous fluid Hows between two rigid boundaries y=0, y =4 tp motion beyond a distance of order (v/w) ¢ from the boundary.
lower boundary moving in the v-direction with constant speed U’ th2.8. A circular cylinder of radius @ rotates with constant angular
up;:ar lbm;nd.ary E?eing at rest. The boundaries are porous, and‘ thivelocity £ in a viscous fluid. Show that the line vortex flow

vertical velocity v is —y af each , i i ot . :

there is an imp)(;sed ﬂowoacross thzns;;s::;ntfig}gxi\fg;;:? t;(;uri:gltti(;o éhﬂ‘ = % =

i : : g floy o= Pl r=a,

=l ( U=, is an exact solution of the equations and boundary conditions. Describe
. ‘foughly how the vorticity changes with time when the cylinder is
Show that 'the horizontat velocity profile u{y}is as in Fig. 2.16, so tha suddenly started into rotation with angular velocity @ from a state of
when Uof’?/ v is large the downflow Uy confines the vorticity to a very thif rest. Likewise, discuss the case in which an outer cylinder r=5 is
layer adjacent {0 y = (. simultaneously given an angular velocity Qa?/b?.
[This is probably the mathematically simplest example of a steady - |
b;);mdiq Ialy ©F, but it is untypical n that the boundary layer thickness 52.9. A viscous flow is generated in r>a by a circular cylinder r =g
proportional to v, rather than to ! (see eqn 2.7).] -which rotates with constant angular velocity Q. There is also a radial
27 Incompressible ftuid occupies the space (<< y < o above a pland inflow which results from a uniform suction on the (porous) cylinder, so
ngid boundary y = 0 which oscillates to and fro in the x-direction with that u, =~/ on r = a. Show that
velocity U cos wr. Show that the velocity field g = [u(y, 13, 0, 0] satisfies

@ vy P
1 - gt )’

u, = —alr forr=aq, i
au azu r H
== vy :
of ay? and that

d’n du

r il 2

i " -3 =

r = +(R+ 1)r " + (R =1y =0,

yoh Az whete R = Uafv.
: just one solution of this equation which

Show that if R <2 there is
. satisfies the no-slip condition on r=4 and has finite circulation
- I'=2nru, at infinity, but that if R > 2 there are many such solutions.
- 2.10. Show that, as claimed in eqn (2.37), a line vortex of strength [,
- decays by viscous diffusion in the following manner:

\

o }’t() u :E_(L(} Me"'2’4V’)
U e v U g g T 2nr ’
{a) (b) Calculate and sketch the vorticity as a function of r at two different

Fig. 2.16. Wall-driven channel flow with {a) vy=0 and (DY vohifv > 1... fmes.
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211, Viscous fluid occupies the region <z <« h between two rigi
boundaries z =0 and 7 =4. The lower boundary is at rest, the uppe
boundary rotates with constant angular velocity Q about the z-axis
Show that a steady solution of the full Navier-Stokes equations of th
form

H=ug(r, Z)ey

is not possible, so that any rotary motion u,(r, z) in this system must be
accompanied by a secondary flow (u,, u, #0).

2.12. Viscous fluid is inside an infinitely long circular cylinder »
which is rotating with angular velocity £, so that Uy ==
cylinder is suddenly brought to rest at £=
equation (2.30) in the form

= a"
$Qrforr<a, The
0. Rewrite the evolution

Citg v _ci (r Buﬁ) Vit
3 rar\ 7

and thereby show that

dE 2
G EE=0,

ds
:fru?,dr,
G

kinetic energy of the flow. Hence show thar

where

which is proportional to the
E—>0as t-s 0,

[This may seem a little pointless, given that the exact solution (2.33) is

available, but the above approach is in fact of very general value, and
provides the basis for the proot, in §9.7, of ap important unigueness |

theorem, ]

2.13. Re-derive the results (2.28) and (2.29) by the alternative foute ;

involving eqns (2.24), (2.25), and (2.26).
2.14. Consider in ¥ =0 the 2-I} flow

w=axf(n),  v=—(va)f(y),

where

1= (af v)iy.

Show that it is an exact solution of the Navier-Stokes equations which

(i) satisfies the boundary conditions at the stationary rigid boundary
¥ =10 and (ii) takes the asymptotic form u ~ ax, v ~ —ay far from the
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#

[P U ——

fm

Il 2‘1:' Iklf E“C:}ty F]:ﬁEE ! he :Cllﬂd.':[ly a}fl near a 21:
g'

stagnation point.

boundary (see Fig. 2.13) if
fm "‘"ff” + l __fﬂ?. e 0,
with ’
f@O=f0)=0, f(=)=L |
i ic df’ 15
[The differential equation for f ((n)} :sosglggd Sz;u?z;;;gy; acr;istiﬁgz .
in Fi . Notably, f'(3)=10.998, ' a dista
;lgo:’m)%m ffc:i 2th?e7 bo?mdasr(y fthe flow is effectively inviscid and
v/ _
i i i = ax and v+ —ay.] .
rrotational, with # = ax an o -
; 15. If a flat plate is fixed between (0, 0) and (0, L) m;flf(',tz:t,é s H\:\; o
> /a)2, one might at first think that the flow wol Fore e
o (vd fo;- the plate lies along one of the _stregmlm.cs a ity
?iffeaiNily is it, then, that the observed flow is quite different, as .
ow. , »

2.187

High Revnolds number stagnation-point flow with a

ig. 2.18.
e 2 protruding flat plate.




