1) Bernoulli's law (again)

Read Chapter 1 in D. J. Acheson, and re-derive (on your own, no need to hand in)

- a) the Euler equation
- b) the Bernoulli streamline theorem
- c) Bernoulli theorem for irrotational flow.

2) Rotating bucket of water

An ideal fluid is rotating under gravity g with constant angular velocity Ω . We wish to

find the surface of a uniformly rotating bucket of water. By 'Bernoulli', $p / \rho + \frac{1}{2}u^2 + gz$,

is constant, so the constant pressure surface are $z = c - \frac{\Omega^2}{2g}(x^2 + y^2)$. But this means that

the surface of a rotating bucket of water is at its highest in the middle. What is wrong?

Write down Euler equation in component form and integrate them directly to find pressure p and hence to obtain the correct shape for the free surface.

3) Vorticity of a flow under constant rotation

A fluid undergoing solid body rotation Ω , show that the vorticity of the fluid is twice the rotational rate, $\omega = 2\Omega$, in three ways:

- a) using the definition of the vorticity that relates its magnitude to the angular rotational rate of two orthogonal lines,
- b) expressing the circulation in terms of the vorticity via Stokes's theorem,
- c) applying directly the vector curl to the velocity field.

4) Vorticity of flow around a line vortex

We saw in the class that the velocity field generated by a vortex line, $U_{\theta}(r) = 1/r$, has zero vorticity everywhere except for the origin. Confirm this by applying the vector curl to $U_{\theta}(r)$ in the cylindrical coordinates.

5) Vorticity of rotating Couette flow

The flow inside a rotating Couette cell is given by $U_{\theta}(r) = Ar + B/r$, which is the superposition of the flow around a line vortex and the flow due solid rotation.

- a) Determine the vorticity of this flow, based on answers to questions 3 and 4.
- b) If the inner cylinder at $r = r_1$ is rotating at an angular rotational rate of Ω_1 , and the outer cylinder at $r = r_2$ is rotating at an angular rotational rate of Ω_2 , one can show

that $A = \frac{\Omega_2 r_2^2 - \Omega_1 r_1^2}{r_2^2 - r_1^2}$. Interpret the meaning of *A* in light of our discussions on

vorticity.

6) Streamlines

Consider the unsteady flow $u = u_0$, v = kt, where u_0 and k are positive constants. Show that the streamlines are straight lines, and sketch them at two different times. Also show that any fluid particle follows a parabolic path as time proceeds.

7) Vector Potential and Stream Function

Read chapter 4.2, 4.3 in Acheson to review the definition of the vector potential ϕ and the stream function Ψ . Show that both ϕ and Ψ satisfy the Laplace equation.