MAE 4230/5230 Homework 5 Solution

March 9, 2011

Consider developing flow in a pipe of length L = 8 m, diameter D = 0.2 m, p = 1 kg/m?,
p=2x 1073 kg/m s, and entrance velocity uy, = 1 m/s. This case is solved in the laminar
pipe flow tutorial at https://confluence.cornell.edu/x/6YQaBQ. Go through the tutorial.
You can download the mesh at the top of the geometry step and skip the geometry and
mesh steps. Use FLUENT with the “second-order upwind” scheme for momentum to solve
for the flowfield on meshes of 100 x 10, 100 x 20 and 100 x 40 (axial points x radial points).

1. Plot the axial velocity profiles at the exit obtained from the three meshes. Also, plot

the corresponding velocity profile obtained from fully-developed pipe analysis. Indicate
the equation you used to generate this profile. In all, you should have four curves in a
single plot. Use a legend to identify the various curves. Axial velocity u should be on
the abscissa and 7 on the ordinate.
Hint: In FLUENT, you can write out the data in any “XY” plot to a file by selecting
the “Write to File” option in the Solution XY Plot menu. Then click on Write and
enter a filename. You can strip the headers and footers in this file and read this into
MATLAB as column data using the load function in MATLAB.

Solution: Fully-developed theory gives the classic parabolic profile (see equation be-
low). The pressure gradient can be calculated from the volume flow rate Q. @ is
constant along the pipe; From the uniform inlet profile, () can be calculated as

Q= (1) (wr?)

The resulting equation for the exit profile is

r 2
1)
’ { R }
This is compared with the FLUENT results in the figure below.

2. Calculate the shear stress 7, at the wall in the fully-developed region for the three
meshes. Calculate the corresponding value from fully-developed pipe analysis. For
each mesh, calculate the % error relative to the analytical value. Include your results
as a table.
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Solution: For fully developed flow,

1dp
= —— R = 0.08
7 2dz
Mesh | 7, % error

100x10 | 0.0791892 | -1.0135
100x20 | 0.0797997 | -0.2504
100x40 | 0.0799599 | -0.0501

3. At the exit of the pipe where the flow is fully-developed, we can define the error in the
centerline velocity as
- ‘uc - uexact‘
€= ——mM8M8M8
Uexact

where u, is the centerline value from FLUENT and wey.e is the corresponding exact
(analytical) value. We expect the error to take the form

e = KAr?

where the coefficient K and power p depend upon the order of accuracy of the dis-
cretization. Using MATLAB, perform a linear least squares fit of

Ine=InK + pln Ar

to obtain the coefficients p and K. Plot € vs. Ar (using symbols) on a log-log plot.
Add a line corresponding to the least-squares fit to this plot.

Solution: See below.
4. Let’s see how p changes when using a first-order accurate discretization. In FLUENT,

use “first-order upwind” scheme for momentum to solve for the flowfield on the three
meshes. Repeat the calculation of coefficients p and K as above. Add this € vs. Ar



data (using symbols) to the above log-log plot. Add a line corresponding to the least-
squares fit to this plot. In all, you should have four curves on this plot (two each for
second- and first-order discretization). Make sure you include an appropriate legend
in the figure.

Contrast the value of p obtained in the two cases and briefly explain your results (2-3
sentences).

Hint: To interpret your results, you should keep in mind that the first or second-order
upwind discretization applies only to the inertia (advection) terms in the momentum
equation. The discretization of the viscous terms is always second-order accurate.

Solution: The table of error values is given below.

Ar € (Il-order) € (I-order)

0.01 0.00990 0.00990
0.005 0.00250 0.00249
0.0025 0.00063 0.00063

The curve fit of the data is shown in the figure below. The resulting coefficients are K
= 93.28 and p = 1.99 for the second-order upwind scheme. The coefficients are K =
93.16 and p = 1.99 for the first-order upwind scheme. Please note that the second-order
upwind scheme takes longer to converge, especially for the 100 x 40 grid and the errors
and hence the fitting coefficients are dependent on the level of convergence achieved.

The order of the errors (i.e., p) in both calculations are the same because the dominant
term for the fully developed flow is the viscous term which is always second order
accurate. “First-order upwind” refers to the discretization of the convective terms,
which are zero for fully developed flow. Thus, there should be no difference between the
first-order and second-order upwind schemes in the fully-developed region. However,
the two schemes would not be equivalent in the developing flow region, where the
convective terms are non-zero and the second-order scheme is expected to be superior.



10°

-3

w10

10

Variation of error with grid spacing

0 Second order
—Second order fit
o First order
---First order fit

10”



