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Answer the problems below. Please follow these guidelines when preparing your solutions:

when deriving or calculating answers, place boxes around the final answers.
make sure all answers list the appropriate units.

clearly label all axes on any plots.
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(Exercise by S. Santana) Use an iterative technique to solve the nonlinear equation #* —u* = —11. Show your
derivation of the linearized equation as well as the results for your iterations with four initial guesses. There are
two solutions. Indicate how your initial guess affects the final solution.

Solution: We start with

W —ut=—11. '6h)
now we linearize 1 around our guess ug:
U= ug+(u—ug) = ug+Au, 2)
leading to
ut = ué ~f~4u§Au + 6u§Au2 + 4ugAu3 +Au® 3
and
W =1+ BugAu+ Sughu® + Au’ @
We omit terms that are 2nd order or higher in Au, giving
4.4 3 ;
Ui, +4uAu 5
and
W~ )+ 3ug"Au. 6)

Now we substitute Au = u — i, back in for Au to obtain
~2u + 3ug"u + 3ug — dugu = —11, )

which can be rearranged to give
11+ Zué — 3ug

u g
2 __ A3
3ug 4ug

t)

Repeated application of Eq. (8) will make the guesses proceed toward the correct answer, Values above
approximately 0.75 will lead to the u ~ 2.13 solution, whereas values below that number will converge to the
u ~ —1.61 solution.

Assume that you know the values of u(x) at four gridpoints (e, u;11, #:12, and u;y3), where u; is at x = x;, uiy
18 at x = x; + Ax, w40 is at x = x; + 2Ax, and ;.3 s at x = x; + 3Ax.

(a) Write u;11, w19, and u; 3 as Taylor expansions of u around x;.
. . . . 3l -
(b) Combine and rearrange these equations to give an expression for -g,}g” interms of w;, 141, #ig2, and w3,
13

(c) Show that this approximation is first-order, i.e., show that the truncation error is O(Ax).

Solation:
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Taylor expansions. We write Taylor expansions for the three nearby gridpoints, first u;y

du| 1, ,du| 1 4du d*u 1 du
e, g R 2 o | B Ax4 = —z 9
i =+ hn | +50° o] YEA° 2| Yot A Tt |t ®
then Uiyl
du d?u 4 dPu d*u 4 du
a2 | AT S o | Ax4 1
Uiz = u;+ dx -+ = -3 ‘f‘ 3 P l dx4 P = "‘ (10}
then u; 3:
e e oy B B B il 27Ax4 du) 81Ax5 2ul . an
Uip3 = o= — = i — e
B ax|, 727 @), 20 dd| rar x5 |,
Combine and rearrange. We need all terms lower order than %! to be zero. Each combination of u;, u;1 1,

Ui+, and ;3 can be used to eliminate one of these terms. We pick the multipliers for the velocities to do so,
and then rearrange the sum to solve for %= d A

d3u i3 — i + 30 — ;3 d*u
—| = — =Ax — s 4 12
dx3 |; A3 27 dxt i+ e
The u’s are known, so our approximation is
fiibf _ Wig3 — 3y + 3w — 13)
dx? | Ax3
Order of accuracy.
The truncation error is féAx d— ., which is O{Ax).
rank the following from largest to smallest: -
(a) a”/ao, -
(b) p*/po. -
(© P*/POa f‘f,»““ff
(d) T°/To. /,,f“/

Solation: athen T then p then p. (a*/ag =0

. Consider a normal shock wave betweewd&ﬂ'&s 1 (pr
largest to smallest:

(a) /T,
(b) p2/p1,
(©) ux/u
P2/ p1.

=0.83, p*/pg = 0.63, p*/ pg = 0.52).
hock) and 2 (post-shock). Rank the following from
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Answer the problems below. Please follow these guidelines when preparing your solutions:
e when deriving or calculating answers, place boxes around the final answers.
e make sure all answers list the appropriate units.

e clearly label all axes on any plots.

-+—Reading.-read-Chapters-6-and-7- Review Appendices-B-and C:

2. For one-dimensional flow of fluid between two plates oriented normal to the y axis, the Navier—Stokes equations

simplify to
dp  u
0= ——+4u=—
! Hay2 H
For simplicity, consider g.fg = —1 (corresponding to flow from left to right) and u = 1. Assume that the plates

are located at y = 1 and y = —1, at which we apply the boundary condition that u = 0.

. . . . ; ; 2
(a) Solve this equation analytically by treating % as a constant and integrating the 375‘ term.,

(b) Solve this equation numerically on 5-point and 9-point grids by applying the finite-difference method to
this equation to get a linearized difference equation at grid point i away from the boundary. Note that a
second-order difference approximation for the second-derivative is

d*u wi—1 — 21+ Uiy A2
oty (RS ot e O L . 2
( de ) ; Ax2 +0 ( ) ( )
i. Assemble the discrete system of equations for the grid into a matrix system of the form
Au=b, 3)
where, for example, for the 5-point grid:
U
u
u=| u |. )
Hy
us

and solve this system using MATLAB. You may solve this system using direct inversion of the matrix,
or using an iterative technique. If you use an iterative technique, use u = 0 for your initial guess.
ii. Plot the finite-difference solution obtained on the 3- and 9-point grids and compare it with the exact
solution. Plot i on the abscissa and y on the ordinate.
(c) Now solve the equation 5
0= f%’ +,u.37g—0.4u2 (5)
On the same domain, with same dd—ﬁ and same u and same boundary conditions and same grids. In this case,
the nonlinear term will require that you use an iterative technique. Use u = 0 for your initial guess.
Physically, the —0.4u* term corresponds to a retardation body force per unit volume proportional to the
kinetic energy per unit volume of the fluid. This is not common with normal fluids, but can be observed
with exotic fluids like ferrofluids that respond to magnetic fields. This solution does not atlow for trivially
simple integration like the first equation, but a numerical solution is still possible. Solve the equation, plot
the results and residual, and compare to the solution without the retardation force. What is the effect of the
retardation on the velocity profile?
Why does the solution without the retardation force give zero residual after one iteration while the solution
with the retardation force has a finite residual? (Stated another way, why is only one matrix inversion
required to solve the first problem?) Also, what does this exercise show you about the relative merits of
analytical solution of the differential equations vs. numerical solution of the differential equations?

03
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Solution:

solve the equation analytically... this equation can be integrated directly because ¢ and % are uniform. Thus

dp  u
U= et e
ldp 9%u
o vy g : (N
pdx  dy
<4 +c . 0% 3
e yha= g )
1 4
(Z£> eyt =u ©)
setting u=0aty =1, find c; =0 and ¢ = — %. Thus
1 dp 2
or, for the specified values,
1
uzi(i—f) (1D

Apply the finite-difference method... The equation is simple, so all that is needed is the approximation for
the second derivative:
Ui — 20+ Ui dp
et Dol Y i Ax? 12
# ( A2 ) ds TO) e

Where O (Ax?) indicates “of the order of Ax*”, which tells us how fast the error will go away as we make the
grid more and more refined.

Assemble the discrete system of equations... The above difference equation is applied at i = 2,3, 4. Boundary
: i o - g ; dp ; ;

conditions are applied at = 1,5. Plugging in the specified values for u and 3, the resulting simultaneous

equations take the form

I 0 0 0 0 ui 0

1 -2 1 0 0 2 —Ax?

01 -2 1 0 ws | = | —AZ (13)
0o 0 1 21 I —Ax?

0o 0 0 0 1 us 0

plot the finite-difference solution... The solutions for the 5-point and 9-point grids are plotted in Fig. 1. The
results are, in fact, exactly equal to the analytical solution.

The residuals for the 5- and 9-point grid are plotted in Fig. 2. The residual goes to zero identically in one
iteration.

The MATLAB code is included in Fig. 3.
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Figure 1: Numerical solutions for u vs x for the 5-point and 9-point grids compared with the exact solution.
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Figure 2: Residuals as a function of time for the 5-point and 9-point and 9-point grids. The convergence tolerance
value of 107% is hard to see because this is a linear plot. Note that the residual goes identically to zero after one
iteration
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e

L Z: dpdw=-1; wisc=1};
niter = 14; i

fox Hij=1l:2
N = 4*Nj+l;
dx = LS(N-E); 5 di
¥ = linspacei-1,1,H}
ug = linspace(0,0,H)
A = zeros(N N): ==
b = zeros(N,1);
Ai1,1) = 1: ==
bily =0
AN M) =
(1) 0 s

for i=2Z:MN-1
Aii,i-1)
A{i,141)

b{i) = dpde/visc™{dx"2):
erid

res{iter,Nj)
g = uh: e
end

sgred (ug-ul ' * {ug-u) ) /sun{sbs{u)}; =

1L (N3 1y
X_gridl = x;
u_gridl =

elseif (N3
Xx_grids
u_grids =

eni

end

B of solund

figure{l}; clf:

set(gca, 'Box', 'on', 'LineWidth’',2, 'FontNane', 'Helwetica',...
'FontSize' ,14);

=plot{u_gridl,x_gridl,‘sb',u grid2,x_gridZ,'cr'}; hold on:

getih, 'LineWidth',2);

X_exact = linspace(-L/Z,L/2,51):

u_exact =1./2,7 {L-x_exact.*x_sxact):

h=ploti{u_exact,x_sxact,'-k'}:

seti{h, 'LineWidth',2); xlabel{'nu'); ylabel('x'}:

legend( 'Five-point grid', 'Nine-point grid', 'Exact');

figure(Z); clf;

set(gea, 'Box', 'on', 'LineWidth',2, 'FontlNane ', 'Helvetica',...
'Fontfize'  14);

h=plot{l:niter,res{:,1),'-k' linicer,res{:,2),'--K'); hold on:

set({h,'LineWidth’ 2}

h = plotilinspace{l,nicer,2},linspaceile-6,1le-6,2},"tk"'):

¥label('Iteration number'):

¥label{'Residual'}:

legend (' Five-point grid', 'Nine-point grid','Conv. criterion',3):

Figure 3: MATLAB solution for pressure-driven flow between two infinite plates.

® (



http://www.kirbyresearch, com MAE4230/MAE5230 Intermediate Fluid Dynamics, (€) Brian J. Kirby

Now solve the equation... We now have a nonlinear source term that is a function of %%, We must linearize
this to put the solution in matrix form. We begin by deriving a linear approximation for 2. Defining

Au=u—u, (14)
where uy is the “guess value.” we can write
u” = (ug+Au)? (15)
now multiply out:
W’ = up + 2ugAu~+ A (16)

now, we assume that Ax is small (in particular, Au is the difference between the current guess and the next
guess. When we start getting close to the answer, Au will approach zero). Given that Au is small, we neglect the
higher-order terms in Au. Thus the Au® term we assume approaches zero. so we have

W =l -+ 2u Au an
Note that this is now an approximation which will get better and better as we iterate toward the final solution.
Now, replace Au with u —u, and solve for our approximation for 4 as a function of iy:

u* =) + 2upAu (18)
w” :ué—i—l’ug(u—ug) (19
ut = ué + 2ugu — Zué 2m
ut = fué +2ugu 2n
and thus
—0.4u” = 0.4u; ~0.8uzu _ (22)
Substituting this and the approximation for the second derivative into the differential equation yields
Wi — 20+ iy dp 2 9
_i‘_ax+i" —0Bugi; = - —0.4ug; +0 (&) (23)
which, in matrix form is
1 0 0 0 0 — 8
"y E".E _ 2
1 —2—0.8ug282/p 1 0 0 | (8% /) { 2 —Obug
0 1 2 —0.8uy 3857/ 1 .y 0 uy | = | (8%/y) % —0.4uy 3>
0 0 1 -2 — O.Sug’4 u 1 Uq dp 5
0 0 0 0 1 s (82/) & 0B
) (24)
or, plugging in values for g and %:
1 1] 0 0 0 U] 0
I —2-0.8u,55x% 1 0 0 2 8x” (—1—0.4ug %)
0 1 —2—0.8uy 38x7 1 0 uy | = | & (—1—-04ug3%)
0 0 1 —2—0.8uy 28 1 U4 8x? (—1—0.4ug 42}
0 0 0 0 1 Us ]

(25)
The solution for the 5-point and 9-point grid is plotted in Fig. 4.

The residuals for the 5- and 9-point grid are plotted in Fig. 5. Note that, now that there is a linearized u* term,
the residual does not immediately go to zero.

The MATLAB code is included in Fig. 6.
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Figure 5: Residuals as a function of time for the 5-point and 9-point grids.
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wisc=l;

clear ali;L :
niter = 7;

=-1

for Nj=1:2
H = 4%Nj+l; s
dx = L/(N-1};

¥ = linspace{-1,1,
ug = linspace{0,0
& = zeros(N,N):
b = zerosi{l,l);
A(l,1)

for i=2:H-1
Afi,i-1) =
Afi i+l) =
et 2
Lo iter = lipiter =
for i=2:8-1
Afi,i) = -2-.8%d&x*Z/viscrugli); *
bii) = (dx*2)/wisc? {dpdx-.4%ug{ii*2);

iE(H3 == 1)
x_gridl = x;
w gridl = u;

elseif (M) == 2}
x_gridz = x: °
u_gridz = u;

end

figure(l):; clf:

set(gea, 'Box', 'on', 'LineWidth' 2, 'FontHane', 'Helvetica',...
'Fontdize',14);

h=pletiu_gridl,x _gridl,’'sb',u grid2,x gridZ,'or'}; hold on;

getlh, 'Linellidch',2)

x_exact = linspace(-L/2,L/2,51});

u_exact =l./2.%{1l-x_exact.*x exact);

h=plotiu_exact,x_exact,'-k'};

setih, 'LineWidch', 2} xlabel('u'); vlabel('x'"']);

legend (' Five-point grid', 'Nine-point grid','with no retarding force'):

figquref{2); clf;

setigca, 'Box','on', 'LineWidch',2, 'Fontllape ', 'Helvetica', ...
'FontSize',14):

h=semilogyi(liniter,res{:,l),'-k' l:initer, reaf:,2),'--k'}: hold on:

set(h, 'LineWidth',2);

h = semilogy(linspace{l,niter,2),linspace(le-6,1e~6,2), ':k'};

%label{'Iteration number');

ylabel({'Residual');

legend|{'Five-point grid','Nine-point grid’, 'Conv. criterion',3):

Figure 6: MATLAB solution for pressure-driven flow between two infinite plates with a nonlinear (4u?) retarding
force.
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