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Without sensory feedback, flies cannot fly. Exactly how various
feedback controls work in insects is a complex puzzle to solve.
What do insects measure to stabilize their flight? How often and
how fast must insects adjust their wings to remain stable? To gain
insights into algorithms used by insects to control their dynamic
instability, we develop a simulation tool to study free flight. To
stabilize flight, we construct a control algorithm that modulates
wing motion based on discrete measurements of the body-pitch
orientation. Our simulations give theoretical bounds on both the
sensing rate and the delay time between sensing and actuation.
Interpreting our findings together with experimental results on
fruit flies’ reaction time and sensory motor reflexes, we conjecture
that fruit flies sense their kinematic states every wing beat to
stabilize their flight. We further propose a candidate for such
a control involving the fly’s haltere and first basalar motor neuron.
Although we focus on fruit flies as a case study, the framework
for our simulation and discrete control algorithms is applicable to
studies of both natural and man-made fliers.

quantitative study of organismal behavior | stability of flapping flight |
discrete time-delayed controller | b1 motor neuron

Uncontrolled flapping flight is often unstable. A fruit fly with-
out its gyroscopic sensors, the halteres, will tumble and fall

(1, 2). Robotic fliers have a similar fate unless they are pas-
sively stabilized (3) or actively controlled (4). Thus, even
in steady flight, insects must adjust their wing motions to sta-
bilize their flight.
Exactly how various sensory feedback controls work in flying

insects is a complex puzzle to solve (1, 2, 5–13). What do insects
measure to stabilize their flight? What kinds of neural compu-
tations and muscle activities are involved to correct their flight
course or to turn? How often and how fast do insects adjust their
wings to remain stable? What are the theoretical limits on the
timescales in the control algorithm, imposed not only by neural
physiology, but also by the dynamics of flapping flight?
Recent works have shown that the stability of flapping flight

can be related to the stability of fixed-wing airplanes (14) in
the limit where the wing-beat frequency is much faster com-
pared to that of body oscillations (15). In such a limit, the
aerodynamic forces can be approximated by their time-averaged
values over a wing-beat cycle. The governing equations for the
body dynamics near equilibrium flight can be simplified into a set
of linear equations (2, 15–19). For longitudinal flight, the pri-
mary instability is associated with the body-pitching dynamics,
resulting from the dynamic coupling between the forward and
pitching motions of the body. This instability is seen both in
linear stability analysis of averaged models and in direct nu-
merical simulations where the instantaneous coupling between
body and wings is taken into account (20).
In this work, we ask how to design an effective controller for

flapping flight and what the controllability might reveal about the
internal control schemes. In particular, how do the timescales in
the control algorithm affect the stability? To quantify the sta-
bility and investigate the controllability of free flight, we need
a computational tool that can simulate flight in both open-loop

and closed-loop conditions. There are few existing results on
dynamic stability and controllability in the nonlinear regime of
flight, especially when the instantaneous coupling between the
flapping wings and the body is treated exactly.
In what follows, we first describe our simulation of flapping

flight. We then discuss the rationale behind our proposed dis-
crete time-delayed linear control algorithm and study the effec-
tiveness of such a controller. We find conditions on both the
sensing rate and the sensory delay for effective controllers through
examining the interplay between these two timescales. More-
over, using our phase diagram (see Fig. 5), together with the
response time of fruit flies to body torque perturbations (12), we
are able to give sharper theoretical bounds on the sensing rate
and delay time in relation to the wing beat. These results led us
to conjecture that fruit flies sense their body orientation every
wing beat. We discuss the plausibility of a beat-to-beat sensor
based on findings in neural studies of flies.

Simulation
Three-Dimensional Dynamic Flight Simulation. To investigate the
control of 3D flapping flight, we develop a general algorithm to
simulate 3D flapping flight where the aerodynamic forces are
modeled in the quasi-steady limit. There are three new aspects of
this framework in comparison with our previous models of yaw and
pitch dynamics (2, 11, 12). First, it treats the instantaneous coupling
between the dynamics of the wings and body explicitly, without
averaging the aerodynamic forces over a wing period. Second, the
stability and control of flight are analyzed in the regime where the
dynamics are governed by the full nonlinear equations, instead of
linearized equations about an equilibrium flight. Third, the method
is formulated for the general problem in which the body has 6 df.
The separate treatment of yaw dynamics, pitch dynamics in
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longitudinal flight, and roll dynamics in sideways flight can be
viewed as special cases of this general framework. In this paper,
we apply our method to the control of longitudinal flight.
Whereas there are multiple methods for simulating rigid body

dynamics (21–24), our method for simulating the dynamics of
free flight is based on the idea of treating each rigid body sep-
arately subject to internal forces. The internal forces are determined
by kinematic constraints at the joints. This is conceptually simpler
than methods that treat the coupling implicitly.
To simulate 3D free flight with flapping wings, we solve the

Newton–Euler equations for the coupled wing–body system. The
insect model consists of (n + 1) rigid bodies, with 1 insect body
and n wings. Each wing is modeled as an ellipsoid connected to
the body through a ball joint that allows for 3 df in rotation. The
body kinematics are given by its position~r b; linear velocity ~vb;
Euler angles ϕb (yaw), θb (pitch), and ηb (roll); and angular velocity
~ωb (Fig. 1). The wing motion is defined relative to the body and has
its own three rotational degrees of freedom: ϕw, θw, and ψw.
The governing equations for the body dynamics are

mb~ab =mb~g−
Xn

i=1

~f
c
i ; [1]

Ib~β
b
=−~ωb ×

�
Ib~ωb

�
−

Xn

i=1

~τ ci −
Xn

i=1

~r bi ×~f
c
i : [2]

Similarly, the governing equations for the ith wing are

mw
i ~a

w
i =mw

i~g+~f
c
i +~f

a
i [3]

Iwi ~β
w
i =−~ωw

i ×
�
Iwi ~ω

w
i

�
+~τ ci +~r

w
i ×~f

c
i +~τ

a
i ; [4]

where b denotes body, w denotes wing, m is mass, I is the mo-
ment of inertia tensor, ~a is the linear acceleration, ~β is the an-
gular acceleration,~g is the gravitational constant, ~ω is the angular
velocity,~f

a
and~τ ai are the aerodynamic force and torque on the

wing, ~f
c
and ~τ c are the internal force and torque to be deter-

mined,~r bi is the position of the ith wing root relative to the body
center of mass, and~r wi is the position of the ith wing root relative
to the center of mass of the ith wing.
Because we have introduced the internal forces and torques at

the joints, ~f
c
and ~τ c, which are unknown variables (Fig. S1), we

need additional equations that express the kinematic constraints at
the joints. There are two constraints applied at each joint. The first
is on the angular acceleration of the wing relative to the body,

~β
r
i =~β

w
i −~β

b
; [5]

which must agree with the prescribed motion. The second is the
matching condition for the linear acceleration of the wing and
the body at the attachment point:

~ab +~β
b
×~r bi +~ωb ×

�
~ωb ×~r bi

�
= ~aw

i +~β
w
i ×~r wi +~ωw

i ×
�
~ωw
i ×~r

w
i

�
:

[6]

At each instance, the coupled dynamic Eqs. 1–4 together with
the constraint Eqs. 5 and 6 can be cast into a linear system,
[[A]][X] = [R], where the vector ½X �= ½~ab;~β

b
;~aw

i ;
~β
w
i ;
~f
c
i ;~τ

c
i �, the

matrix [[A]] contains mi and Ii, and the vector [R] contains the
known variables with ~ω i, ~f

a
i , and ~τ ai evaluated at that instance.

We solve this coupled system by inverting the matrix [[A]] to find
the body accelerations, and [[A]]−1 is determined by the standard
lower–upper (L-U) decomposition.
Once the body accelerations~a b and~β

b
are obtained, the body

kinematic state evolves in time according to

_~r b =~v b [7]

_~v b =~ab −~ωb ×~v b [8]

_ϕb =
ωb
y sin η

b +ωb
z cos η

b

cos θ b [9]

_θ b =ωb
y cos η

b −ωb
z sin η

b [10]

_ηb =ωb
x +

�
sin θb

�
_ϕb [11]

_~ωb =~β
b
: [12]

We solve this set of nonlinear ordinary differential equations,
using an eighth-order Runga–Kutta scheme.

Wing Motion. The wing flaps back and forth along a horizontal
stroke plane following a pattern similar to that observed in fruit
flies. We use the generic description of these periodic motions
based on our earlier work (25). The time dependences of the
three rotational angles, ϕw(t), the stroke angle, θw(t), the deviation
angle, and ψw(t), the wing-pitch angle (Fig. 1 and Fig. S2), are
given by

ϕwðtÞ=ϕ0 +ϕm
arcsin½K sinð2π ftÞ�

arcsinK
[13]

θwðtÞ= θ0 + θm cosðN · 2π ft+ δθÞ [14]

ψwðtÞ=ψ0 +ψm
tanh

�
C sin

�
2π ft+ δψ

��
tanhC

; [15]

where ϕ0, θ0, and ψ0 are the constant offsets; ϕm, θm, and ψm are
amplitudes; f is the wing-beat frequency; δθ and δψ are the phase
shifts; and n = 1 or 2. 0 < K < 1 and C > 0 are waveform control
parameters. n = 1 corresponds to one vertical oscillation per
stroke, and n = 2 corresponds to a figure-eight motion. ϕw becomes
sinusoidal when K is close to 0 and triangular when K is close

Fig. 1. Model fruit fly. The orientation of the body (b) and the wing (w) is
each described by three Euler angles using the XYZ convention. Each wing is
connected to the body through a ball joint. Inset shows the side view of the
wing-stroke pattern.
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to 1. ψw becomes sinusoidal at small C and a step function at
large C.

Aerodynamic Force Model on the Wing. The modeling of aero-
dynamic force on a flapping wing at intermediate Reynolds
numbers is a complex subject in itself (28). Previously, we ex-
amined the unsteady aerodynamics with direct numerical sim-
ulations (26, 27, 29–31) and also constructed a revised quasi-
steady model that included the key unsteady aerodynamic effects
(32, 33). For this work, we need extended simulations for control
analyses. The phase diagram (see Fig. 5) is based on 2,500 sim-
ulations, which would be infeasible to carry out with direct nu-
merical simulations at the current computing speed. Moreover,
the primary cause for the instability is the coupling between the
body and wing motion and less so on the details of the forces. We
have studied the effects of force coefficients on the pitching
stability of flight in the averaged dynamic model and noted that
the instability is insensitive to the choice of the force coefficients.
Therefore, for these studies, we use a revised quasi-steady force
model that takes into account the main unsteady effects, in-
cluding the dynamic stall, the coupling between wing translation
and rotation, and the added mass term. The specific form of
the circulation and drag on each blade element is deduced from

experiments and numerics of a free falling plate in fluid (32, 33)
(SI Text and Fig. S3).

Model Parameters. To compare with related studies, we use the
morphological parameters similar to those of fruit flies, Drosophila
melanogaster in our calculations: body weight = 1.1 mg, body
length = 2.4 mm, body width = 1.2 mm, wing weight = 3.6 × 10−3

mg, wing span = 2 mm, maximal wing chord = 1 mm, and
maximal wing thickness = 0.1 mm. We use the following
parameters in modeling the wing motion during uncontrolled
flight: f = 250 Hz, ϕm = 63°, ϕ0 = 0°, K = 0.7, θm = θ0 = 0°, ψm =
53°, ψ0 = 90°, δψ = −72.4°, and Cψ = 2.4. For simplicity, we have
neglected the deviation from the mean stroke plane, and we
select the phase shift in ψw(t) so that the wing pitches in ad-
vance of the wing stroke reversal. The wing stroke amplitude
is estimated so that the mean aerodynamic lift balances the
body weight.

Results
Pitch Instability of Uncontrolled Flight. We simulate the body dy-
namics according to Eqs. 1–12 in the cases where the left and
right wings beat symmetrically following the motion given above
(Eqs. 13–15) (Movie S1, uncontrolled flight). By symmetry, the
body translates in a vertical plane and is free to pitch up and
down. The state of the body is described by the horizontal and
vertical positions and velocities, the pitching angle, and the
pitching rate. The insect is hovering initially with forces in bal-
ance. However, the flight eventually becomes unstable due to a
pitch instability, similar to those found in the linearized averaged
models (2, 15). We note that the instability appears to be in-
sensitive to model parameters, including the body and wing
inertia, as well as the force coefficients. A subtle difference
between these nonlinear results and those from the linearized
models is that the insect reaches a steady state in the nonlinear
model, instead of having exponentially growing velocities. In the
steady state, the insect is tumbling downward, and the body
weight is largely balanced by the vertical drag due to the coupling
between the descending velocity and the wing motion.
The cause of the pitching instability is the dynamic coupling

between the forward and pitching motions. Fig. 2 illustrates
the onset of this instability during a typical flight. The first four
segments in Fig. 2, Bottom correspond to initial nose-down and
-up oscillations in the body pitch. During the first phase, the
aerodynamic torque pitches the body nose down (A → B). Thus,
the aerodynamic lift tilts forward and drives the insect forward
(B → C). The forward motion couples with the back-and-forth
wing motion and results in a drag that pitches the body up (C →
D). The drag and the horizontal component of the lift decelerate
the body, and the body eventually moves backward (D→ E). The
backward motion is coupled with the wing motion to produce
a nose-down torque (E→ F). The body pitch oscillates as a result
of this coupling between the horizontal and the body-pitch
motions. The amplitude of the oscillation increases, and the body
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accelerates in descent. After a transient period, the body reaches
a steady descent with a terminal speed ∼50 cm/s and a body
oscillation amplitude ∼48°. Because of the body-pitch oscillation,
the mean vertical lift due to the flapping motion is smaller than
the body weight, and the weight balance requires a significant
descent velocity to induce a vertical drag force. In the body
frame, the velocity component along the longitudinal axis
oscillates twice as fast as the component along the dorsal–
ventral axis, consistent with the ratio between the frequencies of
the driving forces along those directions. All of the oscillations are
in phase. It is also worth noting that the oscillation period is about
20 wing beats.

Controller for Stabilizing Body Pitch. To overcome the pitching
instability, an insect must generate a corrective torque during its
flight. Insects are equipped with various sensory systems to
measure their self-kinematics, and control decisions can be made
based on the measurements (10). A fruit fly can correct its body
posture by modulating the center position of the stroke (6, 34,
35). The center position is shifted forward to correct a nose-
down body pitch and backward to correct a nose-up body pitch.
In designing the control algorithm, we build in two key features

relevant to mechano-sensory feedback circuitries. First, whereas
the continuous limit is convenient for mathematical analyses using
differential equations, natural and physical systems often have
discrete actions at small timescales. In the case of neural feedback
circuitry, even when the physical stimulus acts continuously, the
neural firing patterns are discrete, and there is no a priori reason
to assume that the sensing and action occur continuously. Sec-
ond, the time delay between sensing and actuation is likely to
play a critical role in the effectiveness of the controller. The
maximal delay imposed by controllability may further provide a clue
to the timescales involved in insects’ neural feedback circuitry.
Based on these considerations, we construct a time-delayed

discrete linear controller that adjusts the center of the wing
stroke (Fig. 3A) according to the body pitch and body-pitching
rate measured at a previous time. A general form for such a
controller can be described as ϕ0(t) = kuu(t − τ) + kvv(t − τ) +
kθθ

b(t − τ) + kωω
b(t − τ), where ϕ0 is the shift in the wing stroke

from its center position (Fig. 3A) and u, v, θb, and ωb are per-
turbed kinematics away from hovering, with (u, v) the hori-
zontal and vertical velocities and θb and ωb body pitch and
pitching rate. ku, kv, kθ, and kω are the controller gains, and τ is
the time delay. Based on the physical picture of the instability
discussed earlier (Fig. 2), in this paper, we set ku = kv = 0; i.e.,
the controller depends only on θb and ωb. The controller is
a proportional-integral control, with ωb the directly sensed var-
iable by the mechanosensory organ, the haltere, and θb is its
integration in time.

We focus on the effect of the sampling interval and time delay
on the controllability. Fig. 3B illustrates the sequence of events
in our controller. At the beginning of a sampling interval, Ts,
the insect senses its body kinematics. The control algorithm
computes the shift of the center of the stroke, Δϕ0 = ϕ0,n+1 − ϕ0,n,
which takes a time interval of Td to execute. The transition
from ϕ0,n to ϕ0,n+1 consists of an initially quiescent period Td,1
mimicking the reaction time followed by a ramp-up function
over a time Td,2 mimicking the actuation. The actuation can
be modeled in different ways; here, for simplicity, we use the
polynomial ϕ0 ð̂tÞ=ϕ0;n + ðϕ0;n+1 −ϕ0;nÞð10̂t3 − 15̂t4 + 6̂t5Þ, where
t̂= ðt− tn −Td;1Þ=Td;2, ð0≤ t̂≤ 1Þ is the rescaled time variable, and
tn is the time at the nth measurement. The polynomial function,
10̂t3 − 15̂t4 + 6̂t5, corresponds to a transition between two binary
levels 0 and 1, and the curve is second-order differentiable at
both endpoints of its domain.
Fig. 4 displays the longitudinal body pitch in a controlled flight

with kθ = 0.206, kω = 0.005, Ts = 1, and Td = 2, in comparison
with the simulation from uncontrolled flight. With the control,
the body pitch gradually settles down to an undulating steady
state with the same frequency as that of the wing motion. The
control command also converges to a constant. The same con-
troller is able to correct for a large torque perturbation, in-
dicating its robustness (Movie S2).

Constraints on the Sensing Rate and Time Delay in the Control
Algorithm. With these simulations, we can now answer the ques-
tion of how fast and how often the controller should act to stabilize
flapping flight. Fig. 5 shows the effectiveness of the controller in
the parametric space spanned by the sampling interval, Ts, and
the sensory delay, Td. In these simulations, Ts ≥ Td,2 so that
successive control commands do not overlap. We also constrain
jϕj ≤ (90° − ϕm) so that the wing stroke amplitude does not exceed
90°. Color indicates the effectiveness of control quantified by the
SD of body pitch, Δθb, which characterize the oscillation ampli-
tude. For well-controlled flight (blue region in Fig. 5), Δθb is a
few degrees.
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The phase diagram reveals two key results. First, for each
sampling interval (Ts), there is a critical sensory delay time (Tcd)
below which the flight can be controlled. The boundary between
the regions of well-controlled and poorly controlled flight is
sharp and can be approximated by a linear relation, Tcd = 3.0 −
0.5Ts, as shown by the dashed line in Fig. 5. For a fixed Ts = 1,
Fig. 6A shows the transition from a stable flight at Td = 2.8, to an
unstable flight at Td = 2.9, to a more unstable flight at Td = 3.2.
At Td = 3.2, the insect tumbles and falls in a similar way to that
seen in the open-loop simulation.
Another conspicuous feature of the phase diagram is that the

most effective control occurs at sampling intervals that are in-
teger multiples of half a wing beat, Ts = 0.5, 1, . . . , 4.5, 5 wing
beats. This is especially pronounced when Ts > 2, as indicated by
the isolated dark blue bars in Fig. 5B. For example, near Ts = 2,
a small variation in Ts leads to qualitatively different controlled
flight (Fig. 6B). This sensitivity to the discrete value of Ts
reflects the underlying wing-flapping timescale. Because the
aerodynamic force and torque have a fast oscillation on the wing-
beat timescale, θb also contains this fast oscillation on top of
a slower variation. If the dynamic state is measured at a fre-
quency commensurate with the wing-beat frequency, the samples
are taken at the same phase during the wing beat. This eliminates
the fluctuations of θb due to variations within a wing beat and
allows the sensor to measure the change of θb over a longer
timescale, which is the signal that needs to be controlled. In
general, sampling at a fractional number of wing beats leads to
worse control. One exception is when the sampling time is a
multiple of half a wing beat (e.g., Ts = 3.5 or 4.5). Because the
induced θb oscillation starts from the neutral position, the
variation is also mostly eliminated in half a wing beat, similar to
the case where the sampling interval is an integer number of
wing beats.

Predictions
Beat-to-Beat Sensing Rate. If the proposed controller turns out to
be a good approximation of the control strategy used by fruit
flies, we can go a step farther to infer that fruit flies sense their
kinematic state every wing beat. Our reasoning is based on the
phase diagram (Fig. 5), together with the measurements of fruit
flies’ reaction time to external mechanical perturbation (12).
When subject to a sudden torque perturbation, fruit flies respond
by adjusting their wing kinematics after about three wing beats.

This imposes additional constraints in the parameter space,
marked by solid lines in Fig. 5. Two of the three solid lines are
deduced based on Fig. 7. Suppose that the torque perturbation
occurs shortly after the sensing; the observed three-wing-beat
delay would imply that Td + Ts > 3, giving the inclined solid line
in Fig. 5. On the other hand, suppose that the perturbation
occurs just before the sensing, and the observed three-wing-beat
delay would imply Td < 3, giving the solid line on the topmost
boundary. The rightmost boundary at T = 3 corresponds to the
limit beyond which the controller is less robust and works only at
an integer number of wing beats. This leaves two integer choices
for the sampling interval, Ts = 1 and Ts = 2. If we further ex-
amine the controllability in their vicinity, we note that the con-
troller is most robust around Ts = 1. At Ts = 2, a small deviation
from Ts can lead to considerable body oscillations (Fig. 6B).
These considerations lead us to conjecture that fruit flies sense
their kinematic states every wing beat.

A Candidate for Beat-to-Beat Sensing in Fruit Flies. It remains to be
tested whether a fruit fly senses its body kinematics every wing
beat to stabilize its flight. At the very least, such a beat-to-beat
controller requires a fast neural pathway. One potential can-
didate for this is the neural circuitry between halteres and the
first basalar (b1) muscle in flies (36, 37). Halteres are wing-
like appendages that beat at wing frequency and act as gyro-
scopic sensors of body rotation by measuring the Coriolis force
(1). They provide fast inputs to the motor neuron of b1 via a
monosynaptic electrical pathway, as shown in the studies of
blowflies (36). Unique among all steering muscles, b1 is the only
one that fires a single action potential nearly every wing beat, even
during steady flight, whereas other muscles are active only during
turning maneuvers (36, 38). In light of our current results, we
suggest that the first basalar muscle functions as a flight stabilizer
by making a small adjustment to the wing motion, with sensory
inputs from the halteres at a sampling rate of one wing beat.

Concluding Remarks
Our simulations demonstrate that it is possible to stabilize flapping
flight in the nonlinear regime with a discrete time-delayed linear
control algorithm. In our cases, stabilization does not require
prediction. Although this does not rule out the use of prediction
in actual flies, the controller without using prediction gives a
parsimonious description for a reflex controller such as the one
discussed here.
We also note that the wing modulation needed for stabiliza-

tion is small, which would have been difficult to discern from
direct observation of flight. Whereas we focused on control of
pitch instability, the computational framework lends itself to
studies of control in other degrees of freedom, as well the effect
of noise, turbulence, and other disturbances. Of course, the meth-
odology for simulating flapping flight in 6 df is applicable to both
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natural and robotic fliers. The parameter space for controllability
offers a guide for designing controllers of robotic fliers.
Our study further poses general questions on neural sensing

and actuation insects use during free flight. We argued that a
discrete control feedback is a more appropriate conceptual frame-
work for modeling the underlying sensing and actuation, even
though the continuous limit is convenient for mathematical anal-
yses using differential equations. At small timescales, the firing
patterns are discrete even when the physical stimulus acts con-
tinuously. The decisions and actions are based on computations of
these discrete events. There is no a priori reason to assume that
the control is continuous at these finer timescales. For voluntary
turns, our previous study of fruit fly’s yaw turn found evidence that
the actuation occurs in a step-like fashion (11). Our current sim-
ulations suggest that given the underlying time-periodic flight
system, the controller for stability is more effective if it senses and
acts in concert with the natural measure of time, the wing beat.

Finally, a main motivation for our work is to make connections
between the internal neural control mechanisms and the mac-
roscopic physical laws that govern the behavior of organisms.
The computational modeling described here gives us a means
to examine why insects must control their flight and why they
need to evolve fast neural circuitry, in addition to how they
control their flight. Although direct measurements of neural
activity of insects in free flight remain a challenge, by making
testable predictions on fruit fly’s sensing rate and the role of
the first basalar (b1) muscle, we hope to stimulate new ex-
perimental work probing the relevant neural circuitries during
free flight.
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