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Particle collisions in fluids are ubiquitous, but to compute the collision dynamics in a 
Navier-Stokes flow remains challenging. In addition to capturing the two-way coupling 
between the fluid and the particles, a key difficulty is to resolve the collision dynamics 
mediated by the flow. The gap between particles during collision is minuscule. This 
introduces a small length scale which needs to be resolved simultaneously with the flow 
at the large scale. Our goal is to develop a numerical scheme that is accurate and efficient 
in computing the Navier-Stokes flow around moving particles while taking into account 
the effect of the lubrication forces on the collisions. Our method integrates the immersed 
interface method with the lubrication theory in a way that directly couples all three parts, 
the bulk flow, the flow in the gap, and the dynamics of the freely moving particles. We 
present a general algorithm for computing the collision. To test the method, we study 
four fundamental cases involving normal and tangential collisions, so that we can compare 
numerics against analytic solutions in the lubrication layer. In addition, we provide the 
lubrication solution needed for computing collisions between surfaces of any shapes in 
arbitrary relative motions, so that the method can be applied to other cases.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Particle collisions in fluids are ubiquitous and are fundamental to phenomena ranging from sand dune formation to 
sedimentation in oceans. Understanding the essential physics about particle interactions mediated by a flow requires both 
laboratory experiments and direct simulations. Compared to experiments, an advantage of using direct numerical simula-
tions is to quantify the entire flow field together with the dynamics of individual particles. However, resolving this coupled 
system of freely moving particles and an unsteady flow poses computational challenges. One challenge is to resolve the 
dynamic coupling between the flow and each particle. It requires the correct implementation of the boundary conditions 
and also the ability to track the moving interfaces accurately. The computation also needs to resolve simultaneously the low 
Reynolds number flow in the small gaps between the particles and the much higher Reynolds number flow in the bulk.

Freely moving particles in a flow have a strong tendency to cluster. When the particles cluster, the interstitial layers can 
be much smaller than the grid resolution used for computing the bulk flow. The brute-force grid refinement to resolve the 
thin layers of the fluid is expensive and is insufficient to resolve the asymptotic behavior of the collision dynamics [2]. For 
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a quick fix, many studies have introduced ad-hoc collision rules to bypass the treatment of the physics of collisions. These 
rules for the ease of computation can produce visually interesting simulations with unphysical dynamics.

Our goal is to develop a numerical scheme that is accurate and efficient in computing a Navier-Stokes flow around 
moving particles while taking into account the effect of the lubrication forces on the collisions. The method presented here 
include two essential parts. First, to simulate interactions between freely moving particles and the surrounding flow, we 
solve the Navier-Stokes equations coupled to the particle dynamics using the immersed interface method. An advantage 
of the immersed interface method is its use of a fixed Cartesian grid, which saves the cost of grid regeneration. In order 
to resolve the sharp moving interfaces and the coupled dynamics, we have developed an algorithm that has improved the 
accuracy and the efficiency of existing methods [9,8,10–13,1,14]. The main challenge for the current work is to correctly 
account for the physics of particle collisions. We note that the fluid in the thin gap between the particles during collision is 
governed by the lubrication theory, while the bulk flow is governed by the Navier-Stokes equations. Therefore, in principle 
we can integrate the lubrication solutions with the immersed interface method to capture the lubrication forces during 
particle collisions. The use of lubrication solution in the gap would eliminate the need for local grid-refinement. The key 
is to derive a method that has a two-way coupling between the Navier-Stokes solutions and the lubrication solutions. In 
addition, both flows should be coupled directly to the dynamics of the moving particles.

In the following sections, we provide an algorithm for the treatment of these different kinds of couplings. In order to 
test our method and to understand the basic mechanisms during collisions, we choose to study four fundamental collision 
processes so that the numerical results can be compared against the analytic solutions. The method is not limited to these 
testing cases, and can be applied to collisions between two surfaces of arbitrary shapes moving in any relative motion. For 
this, we provide the lubrication solutions in the more general cases, so that the algorithms can be readily extended.

2. Method

The main building blocks for the method include the immersed interface method, which computes the coupling between 
the particles and the flow, the lubrication theory, which computes the flow in the gap between particles, and the integration 
of the Navier-Stokes solutions and the lubrication solutions in order to handle particle collisions.

2.1. The immersed interface method

To compute freely moving particles in a Navier-Stokes flow, we have developed an algorithm in the framework of im-
mersed interface methods [4,5,9,8,10–14,1]. The immersed interface method provides a general framework for solving PDEs 
involving interfaces. Similar to the immersed boundary method [6], it implements the boundary conditions at the moving 
interface between the solid and the fluid by introducing a singular force distribution along the interface in the Navier-Stokes 
equations. The accuracy of the solutions depends on how to numerically handle this singular force distribution. In the im-
mersed boundary method, the delta function associated with the singular force is directly approximated. In the immersed 
interface method, the delta function is integrated to derive jump conditions for discontinuities in piecewise smooth solu-
tions, and the jump conditions are incorporated into the numerical schemes. It is possible to derive all the necessary jump 
conditions for velocity and pressure derivatives from the Navier-Stokes equations [9]. The flow can be solved using a finite 
difference scheme that takes into account the proper jump conditions [8]. The solution gives the desired flow exterior to 
the particles.

To study particle-flow interactions, it is essential to solve the particle dynamics simultaneously. In order to model the 
rigid body dynamics of the particle, we introduce a body force that guarantees the interior fluid to behave as a rigid 
body [11,13]. The body force can be viewed as an external force field acting on a piece of fluid such that the fluid trans-
lates and rotates in a rigid motion. The body force corresponding to rotation behaves like pressure, and the body force 
corresponding to angular acceleration acts as an external force. When the body force is included in the Navier-Stokes equa-
tion along with the singular force distribution, the solution then gives the correct coupled dynamics between the moving 
particles and the flow.

The nondimensional Navier-Stokes equations governing the flow coupled to freely moving rigid body are given by,

∂ �v
∂t

+ �v · ∇�v = −∇p + 1

Re
∇2�v +

∫
�

�f (α, t)δ(�x − �X(α, t))dα + �b, (1a)

∇ · �v = 0, (1b)

where �v = (u, v) and p are the fluid velocity and pressure, Re is the Reynolds number, �f is the singular force density along 
the interface and �b is the body force on the object due to angular acceleration. In the Dirac delta function δ(�x− �X(α, t)), �x is 
a point in the computational domain, �X(α, t) is a point on the interface �, and α ∈ [0, 2π) is a nondimensional parameter 
parametrizing � with the Jacobian J = ||∂ �X/∂α||2 (Fig. 1). By convention, Equations (1a), (1b) are nondimensionalized using 
the fluid density ρf , the characteristic length l, and the characteristic velocity u of the flow. The Reynolds number Re =
ρful/ν , where ν is the kinematic viscosity of the fluid. All variables in subsequent discussions will be nondimensionalized 
in the same way. Dimensional quantities will be denoted using a bold font.
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Fig. 1. Geometries for flow around an immersed object (reproduced from [1]).

The singular force needed to enforce the no-slip and no-penetration boundary conditions on � can be derived from the 
Navier-Stokes equations [11–13]. The tangential and normal components of the force density are given by,

fτ ≡
�f · �τ

J
= − 1

Re
(ω+ − ω−) = − 1

Re

(
�τ · ∂ �v

∂n

∣∣∣∣+ − dθ

dt

)
, (2a)

fn ≡
�f · �n

J
=

∫
∂ fn

∂α
dα,

∂ fn

∂α
= J

(
1

Re

∂ω

∂n

∣∣∣∣+ + [�b] · �τ
)

, (2b)

where ω = ∂v/∂x − ∂u/∂ y is the vorticity, �τ = (1/ J )(∂ �X/∂α) the unit tangent vector to �, ∂/∂n the normal derivative on 
� (see Fig. 1), and [b] = b|�+ − b|�− the jump condition for the discontinuity in b across �.

In order to find the body force �b acting on the particle, we note that the rigid body motion of the fluid enclosed by the 
boundary � can be expressed as a solution to [11,13],

d�v
dt

= −∇p + 1

Re
∇2�v + �b.

In 2D,

p = −d2xc

dt2
x − d2 yc

dt2
y + 1

2

(
dθ

dt

)2

[(x − xc)
2 + (y − yc)

2],

and the body force �b = (bx, by) that depends on the angular acceleration is given as

bx = −d2θ

dt2
(y − yc), (3a)

by = d2θ

dt2
(x − xc), (3b)

where �xc(t) = (xc, yc) and θ(t) are the center of mass position and the orientation of the particle, respectively (Fig. 1). Since 
the body force �b is only nonzero inside the particle, it is discontinuous across �.

2.2. Particle dynamics

The equations of the motion for the moving particle are given by

ms
d�vc

dt
= �Fe + �F f , (4a)

I
d2θ

dt2
= Te + T f , (4b)

where ms is the nondimensional mass of the object, �vc is the velocity of the center of mass in the lab frame, I is the 
moment of inertia with respect to the center of mass, �Fe is the external non-fluid force on the object (e.g. buoyancy 
corrected weight), �F f is the fluid force on the object, Te is the external torque on the object with respect to the center of 
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Fig. 2. Sketch of two objects in close contact. At abscissa ξ , the separation between the two object surfaces is h = h2 − h1. hm is the minimum separation 
at ξ = 0.

mass, and T f is the fluid torque on the object with respect to the center of mass. The fluid force and torque acting on the 
object can be expressed as

�F f = −
∫
�

(
fτ �τ + p+�n)

J dα, (5a)

�T f = −
∫
�

( �X − �xc) × (
fτ �τ + p+�n)

J dα. (5b)

Together, equations (1)–(5) govern the dynamic coupling between the particle and the Navier-Stokes flow. The algorithm 
for solving this set of equations are described in [8,1].

2.3. Lubrication solutions in the gap between two particles

The main idea for the current work is to compute the collision dynamics by integrating the Navier-Stokes solutions in 
the bulk flow and the lubrication solutions in the interstitial flow between particles that are in close proximity. The use of 
lubrication solutions for the flow in the gap eliminate the restriction on the grid resolution in the gap. For the method to 
work, first we need to find expressions for the lubrication solutions in general cases where two particles interact.

Consider the generic case of two surfaces of arbitrary shapes moving in a relative motion in a fluid (Fig. 2). The flow in 
the gap is governed by the lubrication equations:

∂ û

∂ξ
+ ∂ v̂

∂η
= 0, (6a)

∂2û

∂η2
= Re

dp

dξ
, p = p(ξ), (6b)

where û and v̂ are the velocity components along the ξ and η axes in Fig. 2, respectively. The lubrication equations 
holds when h � 1 and Re h2 � 1, where h = h(ξ, t) is the non-dimensional gap height (non-dimensionalized by the same 
characteristic length l used to define the Reynolds number Re).

Given the geometries and motions of the two surfaces, the flow in the lubrication gap can be found by solving equa-
tions (6a) and (6b) subject to the no-slip and no-penetration boundary conditions. Integrating equation (6b) twice gives,

û = û1 + û2 − û1

h
(η − h1) + Re

2

dp

dξ

(
(η − h1)

2 − (η − h1)h
)

, (7)

where û1(ξ, t) is the ξ -component of the velocity of a point on the object 1, and û2(ξ, t) on the object 2. Substituting 
equation (7) in equation (6a) and then integrating with respect to η from h1 to h2 leads to the Reynolds equation [7]

∂h

∂t
+ ∂

∂ξ

(
û1 + û2

2
h

)
+ û1

∂h1

∂ξ
− û2

∂h2

∂ξ
= Re

12

∂

∂ξ

(
h3 dp

dξ

)
. (8)

Further integrating equation (8) gives the pressure derivative needed in equation (7),

dp

dξ
= 12

Reh3

⎛
⎜⎝∂h

∂t
ξ + û1 + û2

2
h +

ξ∫
ξ

(
û1

∂h1

∂ξ
− û2

∂h2

∂ξ

)
dξ + C

⎞
⎟⎠ , (9)
0
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where the integration constant C can be found by evaluating equation (9) at a specific ξ = ξ0,

C = Reh(ξ0, t)3

12

dp

dξ

∣∣∣∣
ξ=ξ0

− ξ0
∂h

∂t

∣∣∣∣
ξ=ξ0

− û1(ξ0, t) + û2(ξ0, t)

2
h(ξ0, t). (10)

In general, we can choose either ξ0 = ξL or ξ0 = ξR as shown in Fig. 4 that separates the inside and outside of the lubrication 
region. At ξ0 = ξL (or ξ0 = ξR ), we can compute fτ using both the finite difference scheme for Equation (2a) and the 
analytical expression in Equation (13). Matching the two computed values determines the value of dp/dξ |ξ=ξ0

. In special 
cases, dp/dξ |ξ=ξ0

can also be determined by symmetry.

2.4. Coupling the Navier-Stokes solutions and the lubrication solutions

The integration between the immersed interface method and the lubrication solution is done in the singular force calcu-
lations. To evaluate the singular force distribution on a surface next to the lubrication layer, we make use of the lubrication 
solutions to calculate ω and ∂ω

∂n :

ω = ∂ v̂

∂ξ
− ∂ û

∂η
≈ − ∂ û

∂η
, (11a)

∂ω

∂n
= ∂ω

∂ξ
nξ + ∂ω

∂η
nη ≈ − ∂2û

∂η2
nη = −Re

dp

dξ
nη, (11b)

where nξ and nη are the ξ and η components of the outward unit normal vector �n to the surface, respectively. Note that 
we have applied Equation (6b) in Equation (11b).

Substituting these into equations (2a), (11a) and using the fact that ω− = 2dθ/dt give the tangential component of the 
singular force density on the lubrication portion of the surface,

fτ ≈ 1

Re

(
∂ û

∂η

∣∣∣∣+ + 2
dθ

dt

)
. (12)

Evaluating ∂ û/∂η|+ in equation (12) at the object 1 and 2 in Fig. 2, i.e. at η = h1 and η = h2, and using equation (7) for 
û, we obtain fτ for the two objects,

fτ1 ≈ 1

Re

(
û2 − û1

h
− Re

2

dp

dξ
h + 2

dθ1

dt

)
, (13a)

fτ2 ≈ 1

Re

(
û2 − û1

h
+ Re

2

dp

dξ
h + 2

dθ2

dt

)
, (13b)

where dp/dξ is given by equation (9).
Likewise, equations (2b), (11b) gives the normal component of the singular force density on the lubrication portion of 

each surface,

fn ≈
∫

J

(
−dp

dξ
nη + [�b] · �τ

)
dα . (14)

2.5. Numerical implementation

Fig. 3 outlines the key steps for integrating the lubrication solutions with the Navier-Stokes solutions. The lubrication 
approximations are triggered when the minimal gap size between the two surfaces is less than a critical distance. In the 
general system of n particles with different shapes, we need to identify the distances between pair-wise particles, which 
is a geometry problem. One way to do this efficiently is to assign an integer value to each grid point: zero for the fluid, 
k for the interior points of the kth object, k = 1, 2, · · · , n. To determine whether a marker point belongs to the lubrication 
region, we can draw a normal line of a critical length from the marker point. If the line ends in a grid cell that has at least 
one interior grid point, then the lubrication approximations are used for evaluating singular forces at the marker. Along 
each surface, we identify the region where the lubrication solutions are needed and then apply the lubrication solutions to 
evaluate fτ and fn (Section 2.4). Outside the lubrication region, we still use finite differences for equations (2a) and (2b)
directly. In the case of collision between two objects, it is straightforward to calculate the minimal distance between them.

Our immersed interface method employs the MAC scheme with explicit time stepping [8]. Before the collision, the time 
step δt of a simulation is given by the CFL conditions,

δt = 0.5 min

[(
umax

δx
+ vmax

δy

)−1

, Re

(
1

δx2
+ 1

δy2

)−1
]

, (15)
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Fig. 3. The flow chart of the coupling between the Navier-Stokes solutions and the lubrication solutions.

Fig. 4. Sketch of two approaching objects in a Cartesian grid before (left) and after (right) the onset of lubrication approximations. The lubrication approxi-
mations are triggered when the normal distance from one object surface to the other is less than 4�n. The lubrication region corresponds to ξL ≤ ξ ≤ ξR . 
The open circles are Lagrange markers indexed with m to represent the object surfaces.

where umax and vmax are the maximum u and v in the current flow field, respectively. After a collision is triggered, we need 
to choose a time scale to capture the collision dynamics. The relevant time scale for a collision can be estimated by mo-
mentum balance, F δt ∼ msδv , where ms is the mass of an object, δv is the change of its speed, and F is the pressure force 
acting on the object. We estimate F by equation (9), F ∼ (12∂hm/∂t)/(Reh3

m). We have the estimation msδv ∼ γ ∂hm/∂t . 
This gives a choice for the new time step,

δt = γ Reh3
m

12
. (16)

3. Results

The method described above applies to general cases of collisions between particles of arbitrary shapes moving in rel-
ative motions. Our current goal for the simulations is to find examples where we can test the method against analytic 
solutions. For this, we restrict ourselves to four fundamental cases: (1) the vertical fall of a cylinder toward a fixed wall, (2) 
a fixed cylinder over a translating wall, (3) a rotating cylinder over a fixed wall, and (4) the collision between two identical 
cylinders. The first and second are studies of normal and tangential collisions of a translating particle, the third is a study 
of the collision of a rotating particle, and in the last case, we also examine the effects of the Reynolds number and the grid 
resolution.
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Fig. 5. Sketch of a cylinder of radius a falling vertically toward a fixed wall with the velocity vc . h is the height of the point P , and hm is the minimum 
gap height.

3.1. Parameters in the simulation

The computations are carried out in dimensionless forms. In all the cases, we have a natural length scale, the diameter 
of a cylinder, l, so the non-dimensional radius of the cylinder is a = 0.5. The velocity scale, u is chosen according to the flow 
characteristics in each case. The computational domain is a rectangle. Neumann boundary conditions for the pressure are 
applied on the four sides of the computational domain, and homogeneous Neumann boundary conditions for the velocity 
are applied on a side that is not a solid wall. In all the cases, the density ratio of a cylinder to the fluid is fixed to be 
γ = 1.5, and the cylinder is parametrized by 512 equally spaced Lagrangian points fixed on its surface.

3.2. Vertical fall of a cylinder toward a fixed wall

To study the normal collision, we consider the free fall of a cylinder in a fluid under gravity toward a fixed wall 
(Fig. 5). The velocity scale u is chosen as the terminal velocity of the cylinder assuming a drag coefficient of unity, 
u = √

(γ − 1)πgl/2. The Reynolds number is Re = 10.
The size of the rectangular computational domain is 4 × 8, and the grid resolution is δx × δy = (1/80) × (1/160). The 

lubrication approximations are triggered when the distance along the normal direction of the cylinder from a marker point 
to a point on the bottom wall is less than h0 = 4

√
δx2 + (2δy)2 ≈ 0.07. At the onset of the lubrication approximations, there 

are about 11 grid points along the vertical direction in the gap with this choice of h0 (instead of h0 = 4�n ≈ 4
√

δx2 + δy2), 
which allows us to resolve the flow in the gap using the Navier-Stokes solver and the new method, so that we can compare 
the two results.

To evaluate fτ and fn , we note that the lubrication equations (7) and (9) in this case become

u = Re

2

dp

dx
y(y − h), (17a)

dp

dx
= 12

Re

x

h3

∂h

∂t
. (17b)

Note that dp/dx = 0 at x = 0, due to symmetry. Following Equations (13a) and (14), we have

fτ ≈ h

2

dp

dx
, (18)

fn ≈ −
∫

ny
dp

dx
Jdα , (19)

where ny = −√
1 − (x/a)2. Since the body does not rotate, �b = 0. The lubrication approximations enter the Navier-Stokes 

solver only through the computation of the singular force. The velocity and the pressure at the grid points in the gap are 
computed together with the rest of the flow in the Navier-Stokes solver, thus we have a smooth velocity and pressure fields 
across the two regions.

Fig. 6 shows the full time series of the acceleration, velocity, and minimum gap size for the cylinder. The cylinder 
accelerates towards the wall from the rest with a decreasing acceleration due to the drag, and then decelerates almost to a 
stop rather abruptly as it gets close to the wall.

It is worth noting that in this case the lubrication force is sufficient to prevent direct contact between the cylinder and 
the wall, independent of the weight and the initial velocities of the cylinder, and the gap size approaches zero asymptoti-
cally, as shown in reference [2]. In other words, there is no rebound during such a collision. Had we used an dry collision 
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Fig. 6. Acceleration, velocity and gap height of a cylinder falling vertically toward a fixed wall.

rule, e.g., the elastic collision between two particles, it would automatically produces a rebound, because the incoming 
velocity toward the wall is non-zero, and by the conservation of momentum and energy, the rebound velocity would be 
non-zero, too.

One way to check the code is to compare the flow computed using the new method to the flow computed using the 
original Navier-Stokes solver in the regime where the gap is small enough for the lubrication approximation to hold and 
large enough for the finite difference approximations also to work when compute fτ and fn . The comparisons are shown in 
Fig. 7. After the lubrication approximations are triggered, the Navier-Stokes solutions agrees very well with the lubrication 
solutions from Equations (17a) and (17b) even though the lubrication approximations enters the Navier-Stokes solver only 
through the computation of the singular force. The corresponding singular forces are shown in Fig. 8.

3.3. Fixed cylinder above a translating wall

Next we consider a tangential collision between a cylinder and a wall in which the shear forces are important. In this 
case, the velocity scale is chosen as the translating speed of the wall, so the tangential velocity of the wall is �v = (U , 0) =
(1, 0). The cylinder is held static. The Reynolds number is Re = 10. The size of the computational domain is 16 × 4, and the 
grid resolution is δx × δy = (1/80) × (1/160). The gap distance between the cylinder and the wall is fixed at hm = 0.05, a 
height at which the lubrication approximations are valid.

With the boundary conditions u1 = U , u2 = 0, the lubrication solutions are given by

u = U
(

1 − y

h

)
+ Re

2

dp

dx
y(y − h) . (20)

To find the pressure derivative dp/dx, we note that the only non-zero term on the left-hand side of Equation (8) is

∂

∂x

(
u1 + u2

2
h

)
= U

2

dh

dx
,

and Equation (9) becomes
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Fig. 7. Comparisons between the Navier-Stokes solutions (blue, solid line) and analytical solutions (red, dots) for the fluid velocity u and the pressure 
derivative dp/dx in a flow due to a cylinder falling vertically toward a fixed wall. The data are computed at the grid line of y ≈ 0.009368 parallel and near 
the bottom wall at the time t = 22.0932 shortly after the lubrication approximations are triggered at t = 22.0900. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 8. Comparisons of the singular force distributions at the time t = 22.0932 shortly after the lubrication approximations are triggered at t = 22.0900
in a flow due to a cylinder falling vertically toward a fixed wall. Solid lines: numerical data from one-sided finite differences. Dots: analytical data from 
Equations (18) and (19).

dp

dx
= 12

Reh3

(
U

2
h + C

)
, (21)

where C is the integration constant, which can be determined from

dp

dx

∣∣∣∣
x=0

= 12

Reh3
m

(
U

2
hm + C

)
, (22)

where (dp/dx)x=0 can be approximated, at each time step, from the current numerical pressure field, using a centered 
finite-difference scheme along the bottom wall at x = 0 as

dp

dx

∣∣∣∣
x=0

≈ p(�x) − p(−�x)

2�x
. (23)

Combining Equations (21) and (22), we obtain the solution for the pressure derivative dp/dx in the lubrication limit:

dp

dx
= 6U

Re h2

(
1 − hm

h

)
+

(
hm

h

)3 dp

dx

∣∣∣∣
x=0

. (24)

The tangential and normal components of the singular force in Equation (13) for the cylinder are given by

fτ ≈ − U

Re h
+ h

2

dp

dx
. (25)

fn ≈ −
∫

ny
dp

Jdα . (26)

dx
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Fig. 9. Steady pressure derivative dp/dx on the bottom-most grid line for a cylinder fixed over a translating wall. Numerical (solid, blue) and analytical 
(Equation (24)) (dots, red) data. The inset zooms on the lubrication region.

Fig. 10. Velocity profile u(y) at different x locations in the gap between a fixed cylinder and a wall translating at the velocity U = 1. (a) Numerical (curves) 
and analytic (symbols) data: at the middle (x = 0, blue, solid, circles), half-way (x = xL/2 = 0.065, green, dot-dashed, squares), exit (x = xL = 0.13, red, 
dashed, diamonds), and outside (x = a/2 = 0.25, black, dotted, triangles) of the lubrication region. (b) Pressure and velocity profiles at the corresponding 
and symmetric points in (a). The thick arc represents the cylinder.

Fig. 9 shows the pressure derivative dp/dx along the bottom-most grid line of the domain. The comparison between the 
Navier-Stokes and analytic solutions in the lubrication region shows good agreement.

Fig. 10(a) shows the velocity profiles across the gap at four different locations: the middle (x = 0), half-way (x = xL/2 =
0.065), exit (x = xL = 0.13) and outside (x = 0.25) of the lubrication region, where the abscissa xL is the x-coordinate of 
the rightmost marker point on the cylinder in the lubrication region. The velocity profile u(y) at a given x location is 
composed of a linear part and a quadratic part. The shape of the velocity profile depends on the relative magnitudes of 
these two contributions, and the concavity of the profile is determined by the sign of the pressure derivative dp/dx (Fig. 9). 
The numerical data from the Navier-Stokes solver agree well with the analytic solutions.

The pressure profile in Fig. 10(b) creates a clockwise torque on the cylinder about its center of mass, which is to separate 
the cylinder from the wall on the left and attract on the right. In contrast, the shear force on the cylinder in the lubrication 
region creates a counterclockwise torque. The torque due to this shear force in the lubrication region is

T L
μ = −a

∫
fτ dθ (27)
�L
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where fτ is given by Equation (25), θ is the central angle of the cylinder measured counterclockwise, and �L denotes 
the lubrication part on the cylinder. Note that the cylinder is kept static even though it experiences the fluid force and 
torque. Below we give an analytical estimate of the torque due to the shear force for a lubrication region of small |θ |. With 
Equations (24) and (25), Equation (27) can be written as

T L
μ = −2Ua

Re

∫
�L

dθ

h︸ ︷︷ ︸
(1)

+a

(
3Uhm

Re
− h3

m

2

dp

dx

∣∣∣∣
x=0

)∫
�L

dθ

h2

︸ ︷︷ ︸
(2)

(28a)

where h = hm + a(1 − cos θ) ≈ hm + aθ2/2 for small |θ | and

(1) ≈ 2π

a

(
a

2hm

)1/2

, (2) ≈ 2π

a2

(
a

2hm

)3/2

.

So we have

T L
μ ≈ −πU

Re

(
a

2hm

)1/2

−
√

2π

4

dp

dx

∣∣∣∣
x=0

(h3
ma)1/2. (28b)

The leading term of O((a/hm)1/2) is

T L
μ ≈ −πU

Re

(
a

2hm

)1/2

. (28c)

3.4. Rotating cylinder over a fixed wall

So far we have considered the translational motion. In this example, we study a rotating cylinder over a fixed wall. 
In this case, the velocity scale is chosen such that the non-dimensional angular velocity of the cylinder is dθ/dt = 1. The 
Reynolds number is Re = 10. The size of the rectangular computational domain is 16 ×4, and the grid resolution is δx ×δy =
(1/80) × (1/160). The gap distance is kept fixed with hm = 0.05.

In this case, the boundary conditions are give by u1 = 0 and u2 = θ̇
√

a2 − x2, the solutions to the lubrication equation 
(7) are

u = θ̇
√

a2 − x2

h
y + Re

2

dp

dx
y(y − h) . (29)

To find dp/dx, we note that the volume flow rate Q across the gap is

Q =
h∫

0

u dy = θ̇
√

a2 − x2h

2
− Re h3

12

dp

dx
, (30)

which gives

dp

dx
= 6θ̇

√
a2 − x2

Re h2
− 12Q

Re h3
. (31)

According to Equation (6a), the flow rate Q satisfies

dQ

dx
= −

h∫
0

∂v

∂ y
dy = −v(x,h) = −θ̇x (32)

⇒ Q (x) = − θ̇x2

2
+ Q (0), (33)

where Q (0) is given by Equation (30) as

Q (0) = θ̇ahm

2
− Re h3

m

12

dp

dx

∣∣∣∣
x=0

, (34)

with (dp/dx)x=0 approximated by Equation (23). Substituting the expression of Q given by Equation (33) into Equation (31), 
we obtain dp/dx.
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Fig. 11. Steady pressure derivative dp/dx on the bottom-most grid line for a cylinder rotating above a fixed wall. Numerical (solid, blue) and analytical 
(Equation 31) (dots, red) data. The inset zooms on the lubrication region.

Fig. 12. Velocity profile u(y) in the gap between a cylinder rotating above a fixed wall at different x locations. (a) Numerical (curves) and analytic (symbols) 
data: at the middle (x = 0, blue, solid, circles), half-way (x = xL/2 = 0.065, green, dot-dashed, squares), exit (x = xL = 0.13, red, dashed, diamonds), and 
outside (x = a/2 = 0.25, black, dotted, triangles) of the lubrication region. (b) Pressure and velocity profiles at the corresponding and symmetric points in 
(a). The thick arc represents the rotating cylinder.

The tangential and normal components of the singular force in Equation (13) on the cylinder are

fτ ≈ θ̇

Re

(√
a2 − x2

h
+ 2

)
+ h

2

dp

dx
. (35)

fn ≈ −
∫

ny
dp

dx
Jdα . (36)

where dp/dx is given by Equation (31).
Again in this case, we find good agreement between the Navier-Stokes solutions and the lubrication solutions (Fig. 11, 

Fig. 12). In this case flow is separated, as seen in the vorticity contours in Fig. 13. The locations of the separation points and 
the reattachment points on the wall are determined by

∂u

∂ y

∣∣∣∣ = 0. (37)

y=0
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Fig. 13. Vorticity contours for a cylinder rotating above a fixed wall.

Fig. 14. Two identical cylinders approaching each other in a rectangular domain, each driven by a constant force 2W .

This provides another check for the code. The lubrication solution to Equation (37) has four roots, two positive and two 
negative. Of the positive ones, one is a separation point, xS P , and the other is a reattachment point, xR P , with xS P < xR P . 
For xS P > 0, we find xS P ≈ 0.254. Numerically, it is sufficient to find the positive x-coordinate of the point on the wall 
where the vorticity is zero since ω = ∂v/∂x − ∂u/∂ y = −∂u/∂ y on the wall, which gives xS P ≈ 0.212. We note that the 
numerical value is close to the value xS P ≈ 0.223 (measured in our unit), reported in [3].

3.5. Head-on collisions between two cylinders

In the final example, we simulate the head-on collision of two identical cylinders in a fluid at Re = 10 and Re = 100
(Fig. 14). In the case of Re = 10, we also compare the results using two grid resolutions. These cases further show that the 
simulation works when the gap height is well below the grid resolution in both cases.

In these cases, the cylinders are pulled toward each other along the center line, by a constant force twice the weight of 
the cylinder, F = 2W = γ /(γ − 1), and there is no additional gravity. The singular force densities on the cylinders are

fτ1 ≈ −h

2

dp

dx
, fτ2 ≈ h

2

dp

dx
, fn ≈ −

∫
ny

dp

dx
Jdα , (38)

where ny = √
1 − (x/a)2 and −√

1 − (x/a)2 for the cylinders 1 and 2, respectively, with the pressure gradient given by,

dp

dx
= 12

Re

x

h3

∂h

∂t
. (39)

Fig. 15 shows the time series of hm and vc at Re = 10, and Re = 100. In both cases, the minimum gap reaches a 
distance well below the grid resolution. The lubrication approximations are triggered when the minimal distance between 
the cylinders is less than h0 ≈ 4

√
δx2 + δy2. At Re = 10, the minimum gap height reaches hm ≈ 0.0048, which is well below 

the resolutions, δx = δy = 0.0125 in one case, and δx = δy = 0.025 in the other. At Re = 100, the minimum gap height 
reaches hm ≈ 0.00049, which is well below δx = δy = 0.01. Without using the lubrication solution, it would have required a 
significant grid-size reduction that would render the computation infeasible.

Comparing the results for Re = 100 and Re = 10, we note that the lubrication effect acts at a much smaller gap size in 
the higher Re case, and it is accompanied by a sharper deceleration. Fig. 16 shows the corresponding vorticity fields in the 
two cases.
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Fig. 15. Minimum gap height hm and vertical velocity vc at Re = 10 (a,b) and Re = 100 (c,d). Two resolutions are used in the case for Re = 10, δx = δy =
1/80 (solid lines) and δx = δy = 1/40 (dashed lines). In the case of Re = 100, the resolution is δx = δy = 1/100. At Re = 10, the lubrication approximations 
were triggered at t ≈ 10.67 for δx = δy = 1/40 and at t ≈ 10.48 for δx = δy = 1/80. At Re = 100, the lubrication approximations were triggered at t ≈ 4.35.

Fig. 16. The vorticity fields plotted using the contours of sign(ω) ln(1 +|ω|). Re = 10: (a) before and (b) after the lubrication approximations were triggered. 
Re = 100: (c) before and (d) after the lubrication approximations were triggered.
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Fig. 17. A lattice of particles settling in a fluid already exhibits the tendency for clustering. In this case it is simulated using a simple dry collision model. 
It needs the proper treatment of the collision using the new method described in the paper.

The method used in this case can be generalized to compute more complex systems of particle interactions (Fig. 17).

4. Summary and outlook

Motivated by the need and the challenge of computing particle collisions while resolving both the unsteady flows and 
the dynamics of the particles, we constructed a method that integrates the lubrication solutions into the framework of the 
immersed interface method for the Navier-Stokes equations. The method works for freely moving particles, and can resolve 
collision dynamics when the gaps between the particles are arbitrarily small. The method presented here is the first to 
successfully integrate the two-way coupling between the NS equations with the lubrication equations in order to compute 
particle collisions in a fluid.
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