Downloaded from https://www.cambridge.org/core. Cornell University Library, on 23 Jul 2018 at 16:48:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2018.337

J. Fluid Mech. (2018), vol. 849, pp. 498-509. (© Cambridge University Press 2018 498
doi:10.1017/jfm.2018.337

Optimal wing hinge position for fast ascent in a
model fly

R. M. Noest' and Z. Jane Wang'- >+

lDepartment of Physics, Cornell University, Ithaca, NY 14853, USA
2Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

(Received 26 June 2017; revised 27 January 2018; accepted 17 April 2018;
first published online 21 June 2018)

It was thought that the wing hinge position can be tuned to stabilize an uncontrolled
fly. However here, our Floquet stability analysis shows that the hinge position has
a weak dependence on the flight stability. As long as the hinge position is within
the fly’s body length, both hovering and ascending flight are unstable. Instead, there
is an optimal hinge position, #*, at which the ascending speed is maximized. A* is
approximately half way between the centre of mass and the top of the body. We show
that the optimal 4* is associated with the anti-resonance of the body—wing coupling,
and is independent of the stroke amplitude. At A*, the torque due to wing inertia
nearly cancels the torque due to aerodynamic lift, minimizing the body oscillation
thus maximizing the upward force. Our analysis using a simplified model of two
coupled masses further predicts, h* = (m,/2m,,)(g/w?). These results suggest that the
ascending speed, in addition to energetics and stability, is a trait that insects are likely
to optimize.

Key words: biological fluid dynamics, swimming/flying

1. Introduction

The wing hinge position on a flying insect is an inconspicuous feature and is rarely
measured. The hinge position relative to the centre of mass is thought to affect flight
stability, as indicated by experiments of insects and robotic flyers. For example, a
trick to stabilize flapping flight is to add additional surfaces (Fraenkel 1939; Childress,
Vandenberghe & Zhang 2006; Van Breugel, Regan & Lipson 2008; Ristroph et al.
2013; Ristroph & Childress 2014). These surfaces introduce two effects: an additional
aerodynamic drag, which damps the motion, and also a change in the mechanical
torque due to the shift between the centre of the mass and the centre of pressure.
It is difficult to separate these two effects in experiments.

To understand the effect of the wing hinge position on flight stability, we carry
out a computational analysis of flight stability. We find that both hovering and
ascending flights are unstable, and that stability has a weak dependence on the hinge
position. The hinge position however affects the ascending speed of flight. We find
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that there is an optimal hinge position, at which the periodic flight solution attains
the maximal ascending speed, for a given stroke amplitude. Interestingly, this optimal
hinge position is independent of the stroke amplitude. We note that at the optimal
hinge location, the body oscillation due to flapping wing motion is minimized,
resembling an anti-resonance. To find a minimal model that captures the dynamic
coupling between the wings and the body, we analysed a simplified model of two
coupled masses. The model predicts the dependence of the optimal location on
the morphological parameters. For the model fly, the optimal hinge position is
approximately half-way between the centre of mass and the top of the body.

These analyses are a part of an ongoing search for optimal solutions in animal
locomotion (Alexander 2001; Srinivasan & Ruina 2006; Berman & Wang 2007; Alben
2008; Pesavento & Wang 2009; Wang 2016). Optimality in natural systems is often
difficult to quantify, as we do not know a priori which functions the animals optimize,
if any at all. Each organism has a large number of parameters at their disposal, and
is likely to improve multiple traits simultaneously in the course of evolution. These
unknowns make the study of optimality a seemingly intractable problem (Gould &
Lewontin 1979). On the other hand, there is evidence that animal behaviour often
pushes the physical limits (Bialek 1987; Haselsteiner, Gilbert & Wang 2014). One way
to make progress is to make quantitative predictions to test optimality of specific traits,
and we hope the predicted #* will be tested by experiments.

2. Methods

In order to study the stability of insect flight we use a three-dimensional dynamical
flight simulation, which determines the time evolution of a flight for prescribed
wing motions. The flight simulation was described in Chang & Wang (2014) and is
summarized below. The new element in our analysis is the search for periodic orbits
and their stability using Floquet analysis (Grimshaw 1991; Kuznetsov 2013; Iams &
Guckenheimer 2014; Sun 2014). To find periodic orbits we search numerically for
initial flight states that return to themselves after a wing beat. The stability of these
periodic solutions is given by the eigenvalues of the linearized Poincare map for this
periodic initial state.

2.1. Three-dimensional dynamic flight simulation

To simulate three-dimensional free flight with flapping wings, we solve the Newton—
Euler equations for the coupled wing-body system (Chang & Wang 2014). The
insect model consists of (n+ 1) rigid bodies, where n is the number of wings on the
body. Each wing is modelled as an ellipsoid connected to the body, also an ellipsoid,
through a ball joint that allows for three degrees of freedom in rotation. The body
kinematics are given by its position 7, linear velocity v, body orientation quaternion
[¢’] and angular velocity ®”. In our current implementation we use quaternions to
represent the body and wing orientations. This has the advantage of avoiding gimbal
lock and simplifies the algebra. For the results the quaternions are converted to Euler
angles, which are easier to understand, as they refer to the rotations about body axes.
The Newton—Euler equations governing the body dynamics are

m'a’ =m’g — Y " F;, 2.1)
i=1

I’ = -’ x (IPw") — Z T — Z X T 2.2)
i=1 i=1
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Similarly, the governing equations for the ith wing are

m'a! =m'g +F; + F!, 2.3)
B! =~ x (of) + 1 +r x 10 + 1. 24)

Here b denotes body, w denotes wing, m is mass, I is the moment of inertia tensor, a
is the linear acceleration, B is the angular acceleration, g is the gravitational constant,
® is the angular velocity, F* and t¢ are the aerodynamic force and torque on the
wing, F¢ and t{ are the internal force and torque to be determined, r/ is the position
of the ith wing root relative to the body centre of mass (COM) and r! is the position
of the ith wing root relative to the COM of the ith wing.

Because we have introduced unknown variables in the form of the internal forces
and torques at the joint, F° and 7°, additional equations must be specified. These
equations are two kinematic constraints applied at each wing joint. The first is on
the angular acceleration of the wing relative to the body,

B =B"—B" 2.5)

which states that the wing acceleration relative to the body must be the prescribed
acceleration. The second constraint is the matching condition for the linear acceleration
of the wing hinge:

a’ + B’ x rf’ + o’ x (@ x rf’) =a"+ " xr’+ " x (0" xr’). (2.6)

At each instance in time, the coupled dynamic equations (2.1)-(2.4) together with
the constraint equations (2.5) and (2.6) can be cast into a linear system, Ax = B,
where x=[a’, B°, a’, B, F;, t], and A contains m; and I;, and the vector B contains
the known variables with @;, F{ and 7 evaluated at the current time. We solve
this system of equations by inverting the matrix A, using standard lower—upper (LU)
decomposition, to find the body accelerations.

Once the body accelerations @’ and B” are obtained, the body kinematic state
evolves in time according to

P =[q" "), 2.7
¥ =da’ — &’ x1°, (2.8)
141" = 1lq]" - []", (2.9

o’ =p°. (2.10)

Here equation (2.7) rotates the velocity vector from the body frame to the laboratory
frame. This quaternion rotation of a vector can be written out in normal vector
products by separating the real part, gy, and complex part, ¢, of the quaternion as
[g]1 = (g0, q). Equation (2.7) becomes

i =" +2¢" x (" x v + gjv"). (2.11)

In (2.9) the operator is quaternion multiplication, which is possible after promoting
[w]’ to a quaternion by adding a zero real part, ie. [w]’° = (0, w’). This set
of nonlinear ordinary differential equations is solved using an adaptive order
Adams—Bashforth—-Moulton algorithm that ensures the quaternion [¢]” remains unitary
and thus a representation of the body orientation (Shampine & Gordon 1975).
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2.1.1. Aerodynamic force model on the wing

The dynamic equations, (2.1)—-(2.4), require the specification of the aerodynamic
force and torque on the wings. Our force model is a quasi-steady force approximation
that takes into account the main unsteady effects, including the dynamic stall, the
coupling between wing translation and rotation and the added mass term (Wang 2005).
The forces on the wings are decomposed into three parts, corresponding to the lift,
the drag and the added mass, i.e. F{ = F;, + Fp + F,. We use the blade element
approximation and divide the wing into infinitesimal wing blades, F = [ f(s)ds and
T= f s X f(s)ds, with s the coordinate along the span.

The specific form of the lift and drag on each blade element is deduced from
experiments and numerical simulations of a free falling plate in fluid (Pesavento &
Wang 2004; Andersen, Pesavento & Wang 2005). The lift force density is given by
S1(s) = —prI(s) x v(s), with the circulation I'(s) = (c(s)/2)[Cr(a)v(s) sin(20e(s)) —
Cr()c(s)w,]s. Here § is the outward unit vector along the span, p; is the fluid density,
Cr and Cy are force coefficients that depend on «, c(s) is the local chord length, w, is
the x-component of the angular velocity and v(s) is the magnitude of the local wing
velocity. o denotes the angle of attack, which is the angle between the wing chord
and the velocity vector. The damping force density is given by: f,, = —psk(s)v(s), with
k(s) = (1/2)c(s)v(s)(A — B cos(2a(s))) and A and B are constants. The aerodynamic
force parameters are fixed at Cy =1.5, Cg=7, A=14, B=1 and oy =1.293 kg m3.

The added mass term represents the force needed to accelerate the wing in a
potential flow. For ellipsoids, the added mass and torque have exact expressions:

—m330 .,
Foggea= | mzv.op |, (2.12)
—Mms330;

—Mya @y + Ms50,0; — M33V,V,
Tadded = | —Ms50y — Maqy@; + M330,0; | . (2.13)
(maq — mSS)wxa)y

Here v and w are the velocity and angular velocity at the centre of mass of the wing.
The added mass coefficients, ms3, myy and mss, are (Tuckerman 1926)

4 ab? 2.14)
m33_3npr(k)’ .
4 a? - b?
= b* , 2.15
MU= 5T 00 I E() — K (k) @.15)
4 3 a? — b?
= —qpa’h? , 2.16
s = 5T T Ek) + DK (k) (2.16)

with K (k) and E(k) the elliptic integrals of the first and second kind respectively. k=

1 — (b/a)?, with a the semi-major axis, half-span, and b the semi-minor axis, half-
chord.

2.2. Wing motion

The wings flap back and forth along a horizontal stroke plane following a pattern
similar to that observed in flies. We use a generalized family of wing motions for
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the three wing angles: ¢"(¢), the stroke angle, 6"(¢), the deviation angle and " (¢),
the wing-pitch angle (Berman & Wang 2007),

8 (1) = b0 + by arcsin(K.sin(Znﬁ‘)) ’ 2.17)
arcsin(K)
0" (t) =6y + 6, cos(N - 2mft + &), (2.18)
Wi tanh(C sin(2mtft 4 8,))
V() = Yo+ Y @nh(C) , (2.19)

where ¢y, 6y and Y, set the mean; ¢, 6, and i, are amplitudes; f is the wing-beat
frequency; 8y and 8, are phase shifts; N=1 or 2, 0 <K <1 and C >0 are waveform
control parameters. N =1 corresponds to one vertical oscillation per stroke, and N =2
corresponds to a figure-eight motion. ¢" becomes sinusoidal when K is close to 0 and
triangular when K is close to 1. ¥* becomes sinusoidal at small C and a step function
at large C. For simplicity, the deviation 6 from the main stroke plane is neglected,
and the phase shift 8, in ¥"(¢) is such that the wing pitches in advance of the wing
stroke reversal. For the calculations reported here, the base parameters are f =250 Hz,
G =70°, ¢y =0°, K=0.7, 6,, =6, =0°, ¥, =53°, Y0 =90°, §, =72.4° and C=24
(Berman & Wang 2007; Chang & Wang 2014). When a parameter is varied in the
study, it is stated in the relevant figure.

2.3. Morphological parameters

For comparison with related studies we use morphological parameters similar to those
of fruit flies, Drosophila melanogaster, we start with the same set of parameters as in
(Chang & Wang 2014): body mass m;, = 1.1 mg, length =2.4 mm, width = 1.2 mm;
wing mass m,, = 3.6 x 107> mg, span =2 mm, maximal chord =1 mm and maximal
thickness = 0.1 mm. The wings are attached & = 1 mm vertically up from and
0.36 mm to the side of the body centre of mass (COM), with the COM of the wing
s, =0.87 mm along the span and s, = 0.25 mm along the chord direction from the
hinge location (see figure 1d). When a parameter is varied, it is stated in the relevant
figure. For theoretical interest, the hinge position is chosen to be in the range of
h € [-2, 8] mm, which corresponds to 1 body length below and 4 body lengths
above the centre of mass of the fly.

2.4. Periodic orbit search and stability computation

The stability of periodic flights are analysed using Floquet analysis. For this, we
first need to identify periodic flight states (figure 1b). The left and right wings flap
symmetrically leading to longitudinal flights. The state vector is four-dimensional,
s = [vy, v, 65, wy], where v, and v, are the horizontal and vertical velocities, and 6,
and o, are the body pitch angle and the pitching rate. A periodic state is found by
adjusting the initial state s, until it minimizes the periodicity error € = ||M(so) — Soll,
using root-finding algorithms. Here M represents the evolution of flight dynamics,
s(t+ T) = M(s(¢)), with T the wing-beat period. The search algorithm consists of
successive minimal searches, with each cycle combining the previous best periodic
state with periodic states of nearby model parameters to seed a new minimum search.

The function M defines a Poincaré map on our flight state space. The periodic
flight states correspond to fixed points of this map. We also investigated whether other
periodic orbits exist, by starting from very different initial conditions and looking
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FIGURE 1. (Colour online) (a) The main mode of flight stability is the pitch instability,
and it is due to the coupling between the forward motion and the body pitching motion.
The stick shows the body pitch axis, with the circle indicating the top of the body. In
both hovering and ascending flight, the body oscillation grows and the flight becomes
unstable. Only in descending flight can an upward drag force stabilize the oscillation. (b)
The Poincaré section for longitudinal flight. The state variables are (vy, vy, €, ). The flight
model maps the initial state s(¢) to s(¢+ 7T) after one wing beat. Periodic flight corresponds
to fixed points of this map. (c) The wing motion has two degrees of freedom, the back
and forth stroke ¢*, and the rotation about the pitching axis, the wing pitch . Left
and right symmetry ensures that the body moves along the longitudinal plane. The tilt
of the body away from the vertical is 6,. (d) Morphological parameters. # denotes the
wing hinge position (red dot above the body centre of mass (COM)). s, and s, define the
location of the wing COM relative to the hinge.

for period-2 orbits. All results converge to the same periodic states as reported here,
suggesting a unique solution.

The stability of flight is given by the eigenvalues of the Jacobian of M. The
eigenvalues of the Jacobian matrix D measure the growth rate of the deviation from
periodic flight (Grimshaw 1991; Kuznetsov 2013). To find these eigenvalues we first

compute D,
o (M(T,s)—s
D= — [—— "~ ~
as T

The eigenvalues A of D are known as the Lyapunov exponents. If max(Re(1)) <0
the deviations decrease over time and the periodic flight is stable. Moreover, the
eigenvectors of D will indicate which deviations lead to instability.

For ease of interpretation, we define a =exp(AT), which is the multiplicative factor
by which a deviation grows after a single wing beat. These « values are called the
multipliers of the Poincaré map associated with our model M. If all |¢;| < 1, then the
deviations decay and the flight is stable. However, if there is at least one |o;| > 1 then
the flight is unstable.

(2.20)

s=50
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FIGURE 2. (Colour online) (a—c) Stability of ascending, hovering and descending flight.
(a,b) Start with a small pitch deviation of 6, ~ 0.1° away from periodic flight, and the
deviation grows. (c) Starts with a pitch deviation of 20°, and the deviation decays. (d)
Contour plot showing how the vertical velocity depends on stroke amplitude and hinge
location. The stability boundary corresponds to the line defined by |«| = 1. The dashed
line corresponds to model fly’s nominal hinge position, half-way between the centre of
mass and the top of the body. Black dots correspond to the example flights shown in
(a—c). (e) Vertical velocity as a function of the stroke amplitude. The maximum velocity
occurs at =1, independent of the stroke amplitude. Each contour is for a constant stroke
amplitude. Colour indicates stability, following the same scheme as in part (d).

3. Results
3.1. Hovering and ascending flights are unstable irrespective of the hinge position

Using the Floquet analysis of periodic flight states, we calculated the stability of flight
at different vertical speeds, by varying the stroke amplitude and the hinge position.
Figure 2(d) shows that both hovering and ascending flight are unstable. Interestingly,
raising the hinge position does not change the stability of hovering and ascending
flight. Figure 2(a) shows an unstable ascending flight, with max(|e;|) = 1.11. With
an initial deviation of 0.1° in 6, the pitch continues to drift, and after approximately
30 wing beats, the fly tumbles. Figure 2(b) shows an unstable hovering flight, with
max(|e;|) = 1.06. Figure 2(c) shows a stable descending flight, with max(|e;|) =0.95,
in which the a large initial deviation of 20° decays.
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The main mode of instability for a longitudinal flight is the pitch instability (Sun,
Wang & Xiong 2007; Cheng & Deng 2011; Ma et al. 2013; Ristroph et al. 2013;
Chang & Wang 2014; Sun 2014), due to the dynamic coupling between the body
pitch and forward motion (figure 1a). This instability is due to the coupling between
the pitching and horizontal motion. An initial deviation in pitch directs the lift force
forward, which results in a horizontal velocity. This horizontal velocity adds a bias
to the wing motion and produces a net drag. Because that the centre of pressure is
not at the centre of mass, the drag torque pitches the body. This coupling between
the translational velocity and the body pitch motion leads to the pitch instability
(figure 2a). The calculations here further show that both hovering and ascending
flight are unstable, regardless of the hinge position. Hovering flight is close to the
stability boundary and the instability increases with the ascending speed. The fruit
fly’s nominal hinge location 7 = 1 mm does not appear to have special stability
properties (figure 2d, dashed line).

3.2. Optimal hinge position
Unexpectedly, there is a special hinge position at hy = 1 mm that maximizes the
ascending speed. Moreover, this optimal hinge position is independent of the stroke
amplitude (figure 2¢). The remainder of this paper explains why this is so.

3.2.1. Anti-resonance

The existence of an optimal / has to do with the dynamics of body—wing coupling.
This coupling can be viewed as an inverted pendulum driven by a pair of oscillating
forces. As the body oscillates, the wing hinge acquires an additional velocity, v, =
wyh. Since the body moves in the opposite direction to the wing, such a coupling
reduces the effective wing velocity relative to the air, v,,, and thereby the aerodynamic
forces. Moreover, the body oscillation directs the lift away from vertical. When the
body oscillation is minimized, the upward force is maximized, and so is the ascending
speed.

Figure 3(a,b) shows the amplitude of the body oscillation, A,, and the phase
delay between the body pitch and wing motion, A®, as a function of h. The body
oscillation is minimized at A* = 0.5 mm accompanied by a phase jump. These are
signatures of an anti-resonance.

3.2.2. A reduced model for analysing the anti-resonance

To understand why the optimal 4 is independent of the stroke amplitude, we
construct a simplified dynamic model, which consists of two point masses that
experience lift and drag forces. The model exhibits an anti-resonance similar to the
one found in the simulations. By examining a special limit of the model, we show
that anti-resonance is due to the cancellation between the lift and inertial torques.
The model also predicts a value for A*, which is independent of ¢,,.

The point masses are positioned at the wing COM and move along the same wing
trajectory as before (figure 3c). The lift forces on both wings are constant in time. For
a steady flight each wing carries exactly half the insect weight. The drag is estimated
using the lift-to-drag ratio of r;;p = 1.2 (Wang, Birch & Dickinson 2004), although
the numerical value does not affect qualitative results. The total forces, including an
inertial term due to the wings, and the torque on the body are:

Fo(t) = —m, i, () — sgn(é‘%r))% cos(@" (1)), 3.1)
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FIGURE 3. (Colour online) (@) Amplitude of the body oscillation as a function of h. The
minimal amplitude occurs at 4= 0.5 mm, irrespective of the stroke amplitude. The inset
shows that the body oscillation 6, is approximately a linear response to the wing stroke
¢". This allows us to define the amplitude A, and the phase shift A®. (b) The phase
shift as a function of h. There is a jump of 180° around 2 = 0.5 mm, independent of
the stroke amplitude. These graphs suggest that the hinge position can be tuned into an
anti-resonance in the body pitch response. (c) The simplified model considers the wings
as point masses at the original COM (black dots). The point mass move along an arc in
a sinusoidal motion, and experience a constant lift, F; and drag, Fp. (d,e) The simplified
model captures the anti-resonance seen in the simulations.

mg
2 b

) (@wFx — x,F?). (3.3)

F.() = —m,Z, (1) + (3.2)

2m,,

T,(H) =2 (1 —
t
The coordinates and variables are defined in figure 1(c,d) and figure 3(c). Note that
the lateral force is zero due to the left-right symmetry. In addition the x-component of
the drag depends on the position along its trajectory. The mass fraction in the torque
equation takes into account that the insect’s COM is affected by the weight of the
wings. Finally, x,, and z, describe the wing COM position during a wing beat:

X (1) = s sin(@" (1)) — s, cos(Y" (1)) cos(9™ (1)), (3.4)
2w (1) = h — sy sin(y " (1)). (3.5)

To find the body pitch oscillation we solve for 6, using 16, = 7y, where the moment
of inertia, I = I* + 2m,, (1 — 2m,,/m,)*h*> + m,(2m,,/m,)*h*. Here I’ is the inertia of
the body ellipsoid. From 6, we can determine its amplitude A, and phase A@ the
same as before (figure 3a). This simplified model captures the main features of the
anti-resonance seen in the full simulation (figure 3d,e). The anti-resonance also occurs
at n*=0.5 mm.


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.337

Downloaded from https://www.cambridge.org/core. Cornell University Library, on 23 Jul 2018 at 16:48:23, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2018.337

Optimal wing hinge position 507

3.2.3. Prediction of h*
With the reduced model, we can derive a prediction for i*. We start by separating
the pitch torque into its three components, inertia 7;, lift t; and drag tp:

. N 2m,,
T = _2mw(zw-xw - xwzw) (1 - ) s (36)
m;

2m,,

T = —X, g (1 - ) , (3.7)
m;
W mg w 2mw w
p = —sgn(¢")z,—— cos(¢”) [ 1 — o cos(g"). (3.8)
L/ n;

Note that the drag torque is proportional to the cosine of the stroke angle. If the body
oscillation was only driven by drag, we would expect to find a phase delay of 90°
between the body and wing motions, exactly the phase at anti-resonance (figure 3).
This occurs when the terms involving sin(¢") cancel each other.

We now consider the special limit of rotating strokes, ¢"'(¢) = wt, with w = 27f,
together with s, = 0. This limit allows us to focus on the mid-portion of the stroke.
By setting s, =0 the wing COM velocity at reversal is exactly zero, and it therefore
simplifies the forces at wing reversal. It however does not affect the lift and drag
during the main portion of the stroke, as the wing velocity and angle of attack remain
unchanged.

In this limit the inertial and lift torques are simplified to:

5 . 2m,, Cw
T =2m,hw’s, sin(wt) | 1 — o« + sin(¢"), 3.9
my
. 2m,, .
Tp = —m,gs, sin(wt) <1 — > o — sin(¢"). (3.10)
n;

Both the inertial and lift torques are proportional to sine functions. Therefore these
equations predict a hinge location where the two torques cancel,

}Zzzn;;tw . (%)2 3.11)

Here L is fly’s body length and @} =g/L. h depends only on the ratio of the masses
and the rescaled frequency, but not the amplitude. For the model fly, #* =~ 0.61 mm,
close to the value found in our simulations.

Given that lift and wing inertial torques cancel at h=h*, we can also understand the
dependence of A® on h (figure 3b). When h > h*, inertial torque dominates the lift
torque and the phase shift increases, so that A® > 90°. Note that the limiting value
for h — oo is not necessarily 180°, because the drag torque is also proportional to
h. Similarly for h* > h > 0 the lift torque dominates the inertial torque and the phase
shift decreases, so that A® < 90°.

Finally, we include the comparison between the simple model and the simulation,
as well as the numerical checks of the prediction made in (3.11). The point mass
model captures the main features in the forces and the torque given by the simulation
(figure 4a,b). The difference in the time series is partly due to the assumption of
a constant lift in the reduced order model. The optimal hinge position A* from the
simple model are also similar to the simulation results, both in the dependence on
amplitude (figure 4c) and on the wing mass to body mass ratio (figure 4d). The
optimal hinge position 4* from the simple model are similar to the simulation results,
both in the dependence on amplitude (figure 4¢) and on the wing mass to body mass
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FIGURE 4. (Colour online) Comparing the simple model and the simulation. (a)
Instantaneous forces. (b) Instantaneous torque. (¢) A zoomed-in view of optimal hinge
position as a function of the stroke amplitude. Both the simulation and the simple model
show a slight increase with #*. (d) Numerical checks of the prediction that h* ~ m,/m,,
in the large m,/m,, limit.

ratio (figure 4d). The model works well as long as the wings are lighter compared to
the body, as is the case with insects.

4, Discussion

We have shown that the hinge position can be tuned to minimize body oscillation
due to flapping motion. At this optimal hinge position, the ascending speed is
maximized for a given stroke amplitude. The predicted optimal hinge position is
approximately half-way between the centre of mass and the top of the body and is
independent of the stroke amplitude.

Incidentally, the body-wing coupling discussed here also suggests a method for
pitch control, which is to hold the wings still briefly during the wing beat. It is easiest
to pause the wings at the wing reversal. This brief pause is most effective when the
body velocity is large. Thus the optimal phase delay between the body and the wing
is 90°, exactly the delay at anti-resonance.
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