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As a solid body approaches a wall in a viscous fluid, the flow in the gap between them is dominated by
the viscous effect and can be approximated by the lubrication theory. Here we show that without grav-
ity, a cylinder comes to rest asymptotically at a finite separation from the wall, whereas with gravity,
the cylinder approaches the wall asymptotically and contact does not happen in finite time. A cylinder
approaches the wall much slower compared to a sphere under matching conditions, implying that the
lubrication approximates hold longer before the molecular scale sets in. Our results further serve as
a building block for analyzing particle interactions in close proximity, and provide analytic results
for integrating the lubrication theory into the computations of Navier-Stokes equations. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4974519]

I. INTRODUCTION

The interaction of particles in fluids is key to understand-
ing collective behavior of particles in particle-laden flows such
as sedimentation,2,6 particle suspensions,15,17 cloud forma-
tion,8,16 as well as biological phenomena such as ocean bio-
mixing and nutrient transport.13,14 In the high particle-density
limit, close-range particle interactions become an important
feature of such flows. They introduce small length and time
scales in the otherwise inertia-dominated flows.

One question about the interaction of two particles in a
fluid is whether they bounce off each other or will they stick
together? Unlike dry collisions, the dynamics of two particles
approaching each other is dictated by lubrication force when
the gap between them is small. The classical lubrication theory
predicts that contact and rebound of two particles would not be
possible because the hydrodynamic force diverges as the gap
separation tends to zero.1,7 A key parameter in studying par-
ticle collisions in fluids is the Stokes number. It is defined as
the ratio of the particle inertia to the Stokes drag. More recent
experimental and theoretical studies3–5,11,12,22 have shown that
there is no contact or rebound if the Stokes number is less than
critical values, but contact and rebound can occur if the Stokes
number is sufficiently high. The classical lubrication theory
needs to be augmented to account for the effects of the com-
pressibility and non-continuum of fluids5 and the deformation
and roughness of particles3,4,10 to make contact and rebound
possible at high Stokes numbers. When the Stokes number is
low, the particle inertia is small relative to the viscous drag,
and the kinetic energy of the particle cannot compensate for
the viscous dissipation. So particles approaching each other
by inertia slow down and come to rest at a given separation,
and no contact or rebound is to take place.

a)Author to whom correspondence should be addressed. Electronic mail:
jane.wang@cornell.edu. Tel.: +1 607 255 5354. Also at Department of
Physics, Cornell University, Ithaca, NY 14853, USA.

In this paper, we apply the lubrication theory to study
the dynamics of a cylinder approaching a wall in a viscous
fluid with or without gravity. We present numerical solutions
of the dynamics at different key parameters. We show that
without gravity, the cylinder comes to rest asymptotically at
a finite separation from the wall, and contact does not hap-
pen; and with gravity, a constant force driving the cylinder
toward the wall, the cylinder approaches the wall asymptoti-
cally, but contact does not happen in finite time. These results
hold in both 2D and 3D. We compare the dynamics of the
cylinder with a sphere and show that the continuum limit
for the cylinder holds for a larger range of the Stokes num-
ber and, under matching conditions, a longer time than the
sphere.

Our analysis was further motivated by our interest in
computing the full Navier-Stokes solutions of particles col-
liding in unsteady flows. Collisions between particles intro-
duce numerical difficulties in resolving the flow. Instead of
using brute-force methods of refining grid spacing or intro-
ducing ad-hoc collision rules, we can integrate the lubrication
theory within Navier-Stokes solvers. The results presented
here provide explicit solutions for the development of such
methods.

II. MODELS

We consider the case of a cylinder falling vertically toward
a fixed wall in an incompressible viscous fluid, as illustrated
in Figure 1.

The flow around the cylinder is governed by the Navier-
Stokes equations

∂~v

∂t
+ ~v · ∇~v = −∇p + ν∗∇2~v , (1a)

∇ · ~v = 0, (1b)

where ~v = (u, v) is the fluid velocity, p is the fluid pressure,
and ν∗ is the non-dimensional kinematic viscosity of the fluid.
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FIG. 1. Sketch of a cylinder falling vertically toward a fixed wall. 3c is the
falling velocity, h is the height at position x, and hm is the minimum gap height
at x = 0.

Hereafter, all variables and quantities are non-dimensionalized
with the cylinder diameter D, the initial falling speed of the
cylinder vc,0, and the fluid density ρf unless otherwise speci-
fied. So ν∗ = µf/(ρfvc,0D), where µf is the dynamic viscosity
of the fluid.

When the cylinder is in close proximity to the wall, the
flow in the gap between the cylinder and the wall can be
approximated by the lubrication equations21

∂u
∂x
+
∂v

∂y
= 0, (2a)

∂2u

∂y2
=

1
ν∗

dp
dx

. (2b)

Equation (2b) is valid when hm� 1 and h2
m/ν

∗� 1, where
hm is the minimum gap clearance in the wall-normal direction
(non-dimensionalized by the diameter of the cylinderD). These
are the two conditions for the lubrication theory to hold. At
this lubrication limit, the flow in the gap can be considered as
quasi-steady. Equations (2b) and (2a) can be integrated to give

u =
1

2ν∗
dp
dx

y(y − h), (3a)

dp
dx
= 12ν∗vc

x

h3
, (3b)

where the height h at the abscissa x is illustrated in Figure 1
and 3c is the vertical velocity (falling velocity) of the cylinder.

The dynamics of the cylinder settling under gravity
are governed by the following ordinary differential equation
(ODE):

ms
dvc

dt
= −(ms − mf )g∗ + Ff , (4)

where ms = πγ/4 (γ is the cylinder to fluid density ratio) is
the mass of the cylinder, mf = π/4 is the mass of the displaced
fluid, g∗ =gD/v2c,0 (g is the gravitational constant) is the non-
dimensional gravitational acceleration, and F f is the vertical
fluid force.

During the lubrication phase, the fluid force F f is domi-
nated by the contribution from the lubrication region, which
can be obtained by integrating the pressure gradient distribu-
tion in Equation (3b) twice9

Ff = −
3πν∗vc

2
h−3/2

m , (5)

and Equation (4) becomes

dvc

dt
= −

γ − 1
γ

g∗ −
6ν∗vc

γ
h−3/2

m . (6)

III. ANALYTIC RESULTS

Since dhm
dt = vc, Equation (6) can be rewritten as

d2hm

dt2
= −

γ − 1
γ

g∗ −
6ν∗

γ
h−3/2

m
dhm

dt
. (7)

We can integrate Equation (7) once with respect to time from
t0 = 0 to t to obtain

vc − vc,0 = −
γ − 1
γ

g∗(t − t0) +
12ν∗

γ
*
,

1
√

hm
−

1√
hm,0

+
-

, (8)

where hm ,0 and vc ,0 =�1 are the values of hm and 3c at time
t0 = 0. Replacing vc by dhm

dt , Equation (8) can be integrated
numerically using an ODE solver for hm(t), which then
gives 3c(t) by Equation (8) and the acceleration a(t)= dvc

dt by
Equation (6).

Setting 3c = 0 in Equation (8) and denoting the values of
hm and t corresponding to 3c = 0 as hm,∞ and t∞, respectively,
we have21

hm,∞

hm,0
=

1
[
1 +

γ
√

hm,0

12ν∗

(
1 + γ−1

γ g∗t∞
)]2

. (9)

With gravity, the cylinder cannot come to rest at a finite dis-
tance since otherwise, there would not be a fluid force to bal-
ance the weight. Equation (9) states that t∞→∞ as hm,∞→ 0,
and the contact cannot occur in finite time.

In the absence of gravity, i.e., without the first term at the
right-hand side of Equation (7) and (9) becomes

hm,∞

hm,0
=

1(
1 +

γ
√

hm,0

12ν∗

)2
, (10)

and Equation (7) can be solved analytically with the initial
conditions 3c =�1 and hm = hm ,0 at t = 0 to give

t = −K(hm − hm,0) − 2KH0(
√

hm −

√
hm,0)

− 2KH2
0 ln *

,

√
hm − H0√

hm,0 − H0

+
-

, (11)

where K =
S
√

hm,0

12+S
√

hm,0
and H0 =

12
√

hm,0

12+S
√

hm,0
with S = γ/ν∗. The

parameter S = γ/ν∗ =4msvc,0/(πµfD) (ms = γρfπD2/4 and
vc,0 are the dimensional mass and initial speed of the cylin-
der) for the cylinder in 2D. It is like the Stokes number for
a sphere in 3D. It characterizes the magnitude of the inertia
of the cylinder relative to the viscous force on the cylinder.
Equation (10) states that hm,∞ (the value of hm when 3c = 0) is
finite and is a decreasing function of S. Equation (11) implies
that
√

hm → H0 as t → ∞. Note that Equation (10) implies
that hm,∞ is finite and is a decreasing function of S. Moreover,
Equation (11) implies that it takes infinitely long to approach
this finite distance, since

√
hm → H0 as t → ∞.
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IV. NUMERICAL SOLUTIONS

The dynamics of the cylinder approaching the wall are
described by the minimum gap height hm(t), the approach-
ing velocity 3c(t) and the approaching acceleration ac(t)
as functions of the time t. The controlling parameters
are γ and S = γ/ν∗ in the presence of gravity and only
S = γ/ν∗ in the absence of gravity. The dynamics are also
affected by the initial minimum gap hm ,0 and g∗. Note that√

1/g∗ =vc,0/
√
gD is the initial falling speed of the cylinder

non-dimensionalized by
√
gD. In our investigations below, we

fix g∗ = 1.
We use the ODE solver ode45 in Matlab to numerically

integrate Equation (8) to obtain hm, 3c, and ac. Without gravity,
we can obtain their analytical results using Equation (11). The
ODE solver is validated by comparing numerical and analyti-
cal results for a non-gravity case, as shown in Figure 2. Since
vc → 0 as t → ∞, the numerical solver works until 3c is
at the level of roundoff error, which occurs at large t as in
Figure 2.

A. The effect of gravity

We first investigate the role of gravity on the dynamics
of a settling cylinder. To contrast the two cases, we use rela-
tively large values for S = γ/ν∗ and γ (but keep hm � 1 and
h2

m/ν
∗� 1) to reduce the effect of the viscous force and to

enhance the effect of the gravitational force.
Figure 3 compares the time history of the gap height,

velocity, and acceleration of the cylinder in the presence and
in the absence of gravity with the same controlling parame-
ters (ν∗ = 0.005 and γ = 10) and initial conditions. At a given
time t, the gap height is smaller in the presence of gravity,
as gravity pulls the cylinder toward the wall. The numeri-
cal solutions in Figure 3 are consistent with the analytical
results in Section III. With gravity, hm decreases with time
and approaches 0 as t → ∞, and the contact cannot occur
in finite time. Without gravity, hm approaches a finite pos-
itive value as t → ∞, and the contact (hm = 0) does not
happen.

FIG. 2. Comparisons between numerical and analytical results of the gap
height, velocity, and acceleration of a cylinder falling vertically toward a fixed
wall without gravity. ν∗ = 0.1, γ = 1.5, and hm ,0 = 0.01.

FIG. 3. Time history of the gap height, velocity, and acceleration of a cylinder
approaching a wall in the presence (solid, red) and in the absence (dashed,
blue) of gravity. ν∗ = 0.005, γ = 10, and hm ,0 = 0.01.

Without the gravity, the only controlling parameter for
the dynamics of the cylinder is S = γ/ν∗. Figure 4 shows the
dynamics in the absence of gravity as we vary S = γ/ν∗ but
with the same initial condition. It shows that the higher S,
the smaller the gap height hm is at a given time t; and the
abrupt change of 3c with t is delayed as S increases. The
parameter S = γ/ν∗ characterizes the magnitude of the iner-
tia of the cylinder relative to the viscous force on the cylinder.
At a larger S, the inertia dominates for a longer time before
the viscous force takes over, and the cylinder gets slowed
down at later time, which explains the delay of the abrupt
change of 3c. The effects of initial gap height on the dynam-
ics of the cylinder in the absence of gravity are shown in
Figure 5.

B. Comparison of a cylinder and a sphere

We next compare the dynamics of a cylinder and a sphere.
We analyze the dynamics of a sphere approaching awall in

FIG. 4. Time history of the gap height, velocity, and acceleration of a cylinder
approaching a wall in the absence of gravity with hm ,0 = 0.01 at different values
of S =γ/ν∗. S = 1: solid, red; S = 10: dashed, blue; S = 100: dash-dotted, black.
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FIG. 5. Time history of the gap height, velocity, and acceleration of a cylinder
approaching a wall at S =γ/ν∗ = 10 in the absence of gravity with different
initial gap height hm ,0. hm ,0 = 0.001: solid, red; hm ,0 = 0.01: dashed, blue;
hm ,0 = 0.1: dash-dotted, black.

a similar manner as a cylinder. We now use the diameter
D of the sphere as the length scale. Under the lubrication
limit, the dynamics of the sphere is governed by the following
ODE:21

ms
dvc

dt
= −(ms − mf )g∗ −

3πν∗vc

2hm
, (12)

where ms = γπ/6 is the non-dimensional mass of the sphere,
mf = π/6 is the non-dimensional mass of the displaced fluid,
and the fluid force is inversely proportional to hm.1 Equation
(12) can be written in terms of hm as

d2hm

dt2
=
γ − 1
γ
−

9ν∗

γ
h−1

m
dhm

dt
, (13)

which can be integrated once with respect to time t to
obtain

vc − vc,0 = −
γ − 1
γ

(t − t0) −
9ν∗

γ
ln

(
hm

hm,0

)
, (14)

where hm ,0 and 3c ,0 =�1 are the initial gap height and velocity
of the sphere at time t0 = 0. To get the gap height hm,∞ when
the sphere comes to rest, we set 3c = 0 in Equation (14) and
obtain21

hm,∞

hm,0
= e−St(1+ γ−1

γ t∞), (15)

where St = S/9=2msvc,0/(3πµfD2) (S = γ/ν∗ as before, and
ms = γρfπD3/6 and vc,0 are the dimensional mass and initial
speed of the sphere) is the Stokes number of the sphere, which
is defined as the ratio of the particle inertia to the Stokes drag
on the particle.

In the absence of the gravity, we have

hm,∞

hm,0
= e−St . (16)

Equations (10) and (16) state that in the absence of gravity,
hm,∞/hm,0 decays algebraically with S = γ/ν∗ and is dependent
on the initial gap height hm ,0 for a cylinder, while exponentially
with S = 9St and independent of hm ,0 for a sphere. Figure 6
shows the comparison of a cylinder and a sphere in terms

FIG. 6. Dependence of hm,∞/hm,0 on S =γ/ν∗ for a cylinder and a sphere.
Cylinder: solid, red; sphere: dashed, blue. hm ,0 = 0.01 for the cylinder.

of the dependence of hm,∞/hm,0 on S = γ/ν∗. For a cylinder,
it takes a much larger S before micro-scale effects (surface
roughness, van der Waals forces, and non-continuum effects)
set in. As such, the lubrication approximations for a cylinder
are valid for a larger range of density ratios and kinematic
viscosity.

In Figure 7 we compare the dynamics of a cylinder and
a sphere approaching a wall in the presence of gravity with
the same γ, ν∗, and initial conditions. For a cylinder, it takes
much longer time before micro-scale effects set in, and the
lubrication approximations for a cylinder is valid for a longer
time.

C. Simulations of full dynamics with lubrication
theory incorporated to handle the collision

We have developed a flow simulation method to cou-
ple the dynamics of a fluid and moving particles in both the
inertia and lubrication phases of the particles. The under-
lying direct numerical simulation method is the immersed
interface method,18–20 which enforces boundary conditions by
singular forces at the boundaries of particles. In the inertia

FIG. 7. Comparison of the dynamics of a cylinder and a sphere approaching
a wall in the presence of gravity in terms of the time history of the gap height,
velocity, and acceleration. Cylinder: solid, red; sphere: dashed, blue. γ = 2,
ν∗ = 0.1, hm ,0 = 0.01.
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FIG. 8. Vorticity contours around a cylinder settling in
a viscous fluid under gravity toward a fixed wall from
the numerical simulation by the immersed interface
method. γ = 1.5.

phase when a particle is away from the others, a boundary-
condition-capturing strategy20 is used to numerically deter-
mine the singular forces. When two particles are in close
proximity, we use the lubrication approximations to analyt-
ically determine the singular forces in the lubrication region.
Detailed description and validation of the method will be
reported elsewhere.

Figure 8 shows the vorticity contours around a cylinder
settling under gravity toward a fixed wall. The flow is in the
inertia regime in the first four snapshots, and in the lubrication
regime in the last one.

V. CONCLUSIONS

We investigated the dynamic behavior of a cylinder
approaching a wall in a viscous fluid. We showed that without
gravity, the cylinder comes to rest asymptotically at a finite
separation from the wall, and contact does not occur, while if
there is gravity, the cylinder approaches the wall as time goes
to infinity. We found that when the initial inertia of the cylinder
is high relative to the viscous fluid force, the falling speed is
quickly damped.

We compared the dynamics of a cylinder in 2D with a
sphere in 3D. The above conclusions for a cylinder in 2D also
apply to a sphere in 3D. The main difference lies in the rates of
decay. Without gravity, the asymptotic gap height decays with
the Stokes number algebraically for a cylinder while exponen-
tially for a sphere. Additionally, the gap height for a cylinder
decreases with time slower than a sphere under the same con-
ditions with or without gravity. So the lubrication theory holds
valid for a longer time and a wider range of parameters in
the case of a cylinder before the breakdown by micro-scale
effects.

Finally, we showed that the lubrication approxima-
tions can be incorporated into a Navier-Stokes simulation
to couple the dynamics of the fluid and particles in both
inertia-dominant regime and viscosity-dominant regime. This
offers a computational tool for examining a large range of
phenomena involving particle collisions at finite Reynolds
numbers.
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