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We investigate aspects of hovering insect flight by finding the optimal wing kinematics
which minimize power consumption while still providing enough lift to maintain a
time-averaged constant altitude over one flapping period. In particular, we study
the flight of three insects whose masses vary by approximately three orders of
magnitude: fruitfly (Drosophila melanogaster), bumblebee (Bombus terrestris), and
hawkmoth (Manduca sexta). Here, we model an insect wing as a rigid body with three
rotational degrees of freedom. The aerodynamic forces are modelled via a quasi-
steady model of a thin plate interacting with the surrounding fluid. The advantage
of this model, as opposed to the more computationally costly method of direct
numerical simulation via computational fluid dynamics, is that it allows us to perform
optimization procedures and detailed sensitivity analyses which require many cost
function evaluations. The optimal solutions are found via a hybrid optimization
algorithm combining aspects of a genetic algorithm and a gradient-based optimizer.
We find that the results of this optimization yield kinematics which are qualitatively
and quantitatively similar to previously observed data. We also perform sensitivity
analyses on parameters of the optimal kinematics to gain insight into the values of
the observed optima. Additionally, we find that all of the optimal kinematics found
here maintain the same leading edge throughout the stroke, as is the case for nearly
all insect wing motions. We show that this type of stroke takes advantage of a passive
wing rotation in which aerodynamic forces help to reverse the wing pitch, similar to
the turning of a free-falling leaf.

1. Introduction
Insect flight is a metabolically costly endeavour, requiring mass-specific oxygen

consumption rates which are about an order of magnitude higher than than those
measured in their terrestrially locomoting counterparts (Dickinson & Lighton 1995;
Harrison & Roberts 2000). Additionally, flying represents a 50–200 fold elevation from
the basal metabolic rate (Kammer & Heinrich 1978; Dudley 2000). Hovering flight is
particularly costly, as there is no ambient wind to aid in lift generation. Accordingly,
a reasonable hypothesis is that insects move their wings in a manner which minimizes
the metabolic cost associated with their motion. In this study, we test this hypothesis
for the case of hovering flight and examine its implications through modelling the
fluid forces on an insect wing and finding and analysing the optimal kinematics of
motion for a given morphology. Specifically, we investigate the optimal kinematics
for fruitfly (Drosophila melanogaster), bumblebee (Bombus terrestris), and hawkmoth
(Manduca sexta) morphologies. These insects range in mass by approximately three
orders of magnitude.
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This idea of optimizing traits with respect to some cost function as means
of explaining animal behaviour has generated much interest (Alexander 1996,
2001; Srinivasan & Ruina 2006; Wilkening & Hosoi 2006; Parker & Smith 1990)
and controversy (Gould & Lewontin 1979) amongst evolutionary biologists and
biomechanists. Much of the criticism aimed at studying biomechanics problems in
this manner states that given the many functions of a living organism, it is unclear
that a specific behaviour can be predicted by optimizing a single function. Moreover,
even if such a function can be defined, it is not clear that any new insight must
necessarily emerge from the study. However, for the case of a hovering insect, the
energetic demands associated with maintaining flight make the power associated with
generating a particular wing motion a natural candidate for a cost function. This
clear relationship between form and function (wing kinematics and hovering ability)
allows us to investigate whether quantitative study can help to explain some common
features in the observed wing motions of a diverse set of insects.

In this study, we find and analyse the energy-minimizing kinematics for the three
insects mentioned above via a quasi-steady model of fluid forces. This model is
similar to the one used by Pesavento & Wang (2004) and Andersen, Pesavento &
Wang (2005a , b), to study the dynamics of a free-falling rigid plate. From this model,
we calculate the average lift production and power consumption over the course of
a flapping cycle. Using a hybrid optimization algorithm which combines a genetic
algorithm with a gradient-based optimizer, we find the kinematics which minimize
the power usage while still producing enough lift to maintain hovering flight. Aspects
of these kinematics are then compared to previously measured wing strokes. We also
study the sensitivity of the optimal solutions to perturbations in various kinematic
parameters to gain insight into why the optimal kinematics are at the values found.
Finally, we investigate why most insects use a single leading edge throughout a
flapping cycle, as opposed to alternating the leading edge near the onset of each
half-stroke.

2. Model of insect hovering
Here we describe our mathematical model for calculating the forces, torques, and

power consumption associated with insect flight, as well as the computational methods
used to analyse it and determine the optimal kinematics.

2.1. Coordinate definitions and transformations

We assume that an insect’s wing is a rigid plate and is allowed to rotate through each
of its three Euler angles. That is, it can rotate azimuthally (φ), vertically (θ), and can
pitch about its radial axis (η). If z is the vertical direction, y is the forward direction
of the insect, and x is perpendicular to the forward direction in the horizontal plane,
then we have that 


x
y
z



 =




r cos θ cosφ
r cos θ sinφ

r sin θ



 . (2.1)

This is visualized in figure 1.
As will be seen in § 2.4, the equations for the aerodynamic forces on a section of

the wing become simplified if we view the system’s velocities in terms of coordinates
co-moving with the wing, x ′ and y ′ (figure 1). This transformation is achieved by
writing the position of the wing slice in spherical coordinates, and then rotating
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Figure 1. Angle definitions.

through the pitching angle, η . In matrix form, this can be written as

(
x̂ ′

ŷ ′

)
= R1R2




x̂
ŷ
ẑ



, (2.2)

where

R1 =

(
cos η sin η

− sin η cos η

)
(2.3)

and

R2 =

(
− sinφ cosφ 0

− sin θ cosφ − sin θ sinφ cos θ

)
. (2.4)

Using this transformation and differentiating with respect to time, we have

vx ′ = r(φ̇ cos θ cos η + θ̇ sin η), (2.5)

vy ′ = r(θ̇ cos η − φ̇ cos θ sin η), (2.6)

ax ′ = r([φ̈ cos θ + θ̇(η̇ − φ̇ sin θ)] cos η + (θ̈ − η̇φ̇ cos θ) sin η), (2.7)

ay ′ = r([θ̇ (η̇ − φ̇ sin θ) − φ̈ cos θ] sin η + (θ̈ − η̇φ̇ cos θ) cos η), (2.8)

where vi and ai are the velocity and the acceleration of the wing in direction i, and r
is the distance along the radius from the wing’s base.

2.2. Wing geometry

For simplicity, the wing cross-section along the chord is assumed to be elliptical, with
semi-minor axis, b, which represents the wing thickness. The chord length, c(r), of the
wing is assumed to vary like a half-ellipse along the wing radius. This is similar to
the assumption made in Weis-Fogh (1973). Hence, the chord length as a function of
radius is given by

c(r) =
4c̄

π

√
1 − r2

R2
, (2.9)

where c̄ is the mean chord length of a wing and R is the wing’s base-to-tip radius.
We assume that b $ c̄. Morphological values used in this study were taken from
Ennos (1989) for the fruitfly, Dudley & Ellington (1990a) for the bumblebee, and
Willmott & Ellington (1997) for the hawkmoth.
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Figure 2. Dependence of φ(t) and η(t) on K and Cη .

2.3. Wing kinematics

Drawing upon available kinematic data from prior empirical studies (Ellington 1984;
Ennos 1989; Dudley & Ellington 1990a; Willmott & Ellington 1997; Russell 2004; Fry,
Sayaman & Dickinson 2005), the flapping motion of hovering flight is parameterized
specifically in order to observe the effects of the rotation speed and relative phases of
the wing’s pitch and reversal, as well as the frequency and amplitude of the motion
in the three angular degrees of freedom described in § 2.1.

The azimuthal coordinate, φ(t), is given by a smoothed triangular waveform,

φ(t) =
φm

sin−1 K
sin−1[K sin(2πf t)], (2.10)

where 0 < K < 1. In the limit where K → 0, φ(t) becomes sinusoidal, and in the
limit of K approaching 1, φ(t) is a triangular waveform (figure 2). In effect, K can be
viewed as a measure of how rapidly the wing reverses direction. This functional form
was inspired by comparing the azimuthal kinematics of the experiments listed above,
which often found a near-sinusoidal form, and robotic wing experiments, which used
a rounded triangular form (Sane & Dickinson 2001).

The angle related to vertical displacement, θ(t), is described by a sinusoidal
oscillation,

θ(t) = θm cos(2πNf t + Φθ ) + θ0, (2.11)

where N is either 1 or 2: N = 1 corresponds to one vertical oscillation per flapping
period, and N = 2 corresponds to a figure-of-8 motion.

Finally, the pitching coordinate, η(t), is described by a periodic hyperbolic function,

η(t) =
ηm

tanh Cη

tanh[Cη sin(2πf t + Φη)] + η0. (2.12)

As Cη approaches 0, η(t) becomes sinusoidal, and as Cη → ∞, η(t) tends towards a
step function (figure 2). Hence, the value of Cη is inversely related to the duration of
wing pitch reversal.

In (2.10)–(2.12), there is a total of 11 parameters which need to be fixed to describe
a wing stroke (table 1). Additionally, we assume that the motions of wings are
symmetrical about the body. Despite the fact that this parameterization only looks
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Description Min Max

f Frequency 0 ∞
φm Azimuthal amplitude 0 π/2
θm Vertical amplitude 0 π/2
ηm Pitching amplitude 0 π
θ0 Vertical offset θm − π/2 π/2 − θm

η0 Pitching offset ηm − π π − ηm

K Affects the shape of φ(t) 0 1
Cη Affects the duration of wing rotation 0 ∞
N Multiplier of θ (t) period 1 2
Φθ Vertical phase offset −π π
Φη Pitching phase offset −π π

Table 1. Table of independent model parameters and their constraints.

Figure 3. A selection of possible wing kinematics. The lines represent a wing chord
cross-section, and the dots are placed on the same edge of the wing throughout the stroke.

at a subspace of all possible periodic functions, a wide range of kinematics is still
available to the insect, as seen in figure 3.

2.4. Aerodynamic force model

The forces acting upon a wing are found via the model formulated to study the
motion of a free-falling plate (Pesavento & Wang 2004; Andersen et al. 2005a)
combined with a blade-element assumption that the total force on the wing is the
sum of forces on many infinitesimal segments. This is a quasi-two-dimensional force
model, as the instantaneous aerodynamic forces for each blade-element are in the
plane perpendicular to the wing radius. The utility of this model, as opposed to
the vastly more computationally costly method of direct numerical simulation via
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computational fluid dynamics, is that it allows us to perform optimization procedures
and detailed sensitivity analyses which require many evaluations of the cost function
in question.

Specifically, the forces and torque on an infinitesimal slice of the wing are given by

dFx ′ =

[(
c(r)

c̄R
Mwing + m22

)
vy ′ η̇ − ρfΓ vy ′ − m11ax ′

]
dr − dF ν

x ′, (2.13)

dFy ′ =

[
−

(
c(r)

c̄R
Mwing + m11

)
vx ′ η̇ + ρfΓ vx ′ − m22ay ′

]
dr − dF ν

y ′, (2.14)

dτ aero
η = [(m11 − m22)vx ′vy ′ − Iaη̈] dr − dτ ν, (2.15)

where ai is the acceleration component of the wing in coordinate i, Mwing is the
mass of a wing, c(r) and c̄ are the chord length and average chord length as defined
in (2.9), R is the wing radius, Γ is the circulation around the wing, dF ν

x ′ , dF ν
y ′ , and

dτ ν represent the viscous forces and torque on the wing segment, m11, m22, and Ia

are added-mass terms, and ρf is the density of the surrounding fluid (taken to be
1.29 kg m−3). In the two force equations, the first term is due to the fact that the
forces are being measured in a rotating coordinate frame, the second term is the force
produced via circulation, the third term is an added-mass force, and the final term is
the viscous dissipation.

More specifically, the circulation, viscosity, and added-mass term are given by

Γ = − 1
2
CT c(r)|v| sin 2α + 1

2
CRc2(r)η̇, (2.16)

Fν = 1
2
ρf c(r)

[
CD(0) cos2 α + CD(π/2) sin2 α

]
|v|〈vx ′, vy ′ 〉 dr, (2.17)

dτ ν = 1
16πρf c4(r)[µ1f + µ2|η̇|]η̇ dr, (2.18)

m11 = 1
4
πρf b2, m22 = 1

4
πρf c2(r), Ia = 1

128
πρf [c2(r) + b2]2. (2.19)

Here, α is the angle of attack, CT and CR are, respectively, the translational and
rotational lift coefficients of the wing, CD(α) is the wing’s drag coefficient as a function
of the angle of attack, µ1 and µ2 are dimensionless coefficients related to the viscosity
of the fluid, and f is the flapping frequency. Values for CT , CD(0), and CD(π/2) for
fruitfly and hawkmoth wings were taken from model flapping experiments (Dickinson,
Lehmann & Sane 1999; Usherwood & Ellington 2002). Bumblebee measurements were
taken from wind tunnel measurements in Dudley & Ellington (1990b). Finally, it is
also possible to obtain analytic expressions for the components of the aerodynamic
torques in the φ̂- and θ̂ -directions through

τ aero
i =

∫ r=R

r=0

(r × dF)i . (2.20)

For the calculations presented here, the torques and forces are analytically calculated
at 1000 evenly spaced time steps over a single period and average forces and torques
are obtained at via numerical integration.

The total lift on the wing is calculated by transforming the force vectors back into
the laboratory frame, in which ẑ is the unit vector in the vertical direction. Fz is
defined as the magnitude of the ẑ component of the total force. In order to make
a convenient non-dimensional measure of the vertical force on an insect, we will
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subsequently quantify an insect’s lift by L, which is defined as

L ≡ 2〈Fz From One Wing〉
mg

, (2.21)

where m is the total weight of the insect and g = 9.81 m s−2. Hence, if L ! 1, the
insect is able to produce enough lift to fly.

2.5. Modelling power consumption

Given a particular morphology and set of kinematics, we also wish to determine the
amount of power necessary to produce the desired wing motion. We assume that the
energetic cost to the insect is given by the time-averaged positive mechanical power
output. This includes both the power necessary to overcome aerodynamic drag and
the inertial power required to accelerate the wing’s inertia. Additionally, we assume
that the cost for negative power is negligible and that the effect of elastic storage,
which has been measured to be on the order of 10 %, is minimal (Dickinson &
Lighton 1995).

We model the power consumption by assuming that motions are powered by
rotational actuators located at the base of the wing. Using the Eulerian equations for
the rotational motion of a rigid body and given the assumptions made above, we
have that the power output from rotation through angle i (pi) is given by

pi(t) = Ωi

[
IiΩ̇i − ΩjΩk(Ij − Ik) − τ aero

i

]
, (2.22)

where [i, j, k] is a cyclic permutation of [φ, θ, η], Ii is the moment of inertia when
rotating in i, and Ωi is the angular velocity in the respective angular coordinate.
The first two terms of (2.22) represent the power output the wing must overcome in
order to move in a vacuum, whereas the final term (using the definition of τ aero from
(2.15) and (2.20)) is the additional power that must be added in order to overcome
aerodynamic forces. This equation implies perfect elastic storage because whenever
pi < 0, it counts as negative power, meaning that when the wing decelerates, energy is
put into the system to be used later when it accelerates. In order to only take positive
power into account, we define Pi(t), the positive power consumption necessary to
move the wing through angle i, by

Pi(t) = Ξ [pi(t)] (2.23)

where Ξ (x) is defined by

Ξ (x) =

{
x if x > 0
0 if x " 0.

(2.24)

The total mass-normalized power required to perform the wing motion, P ∗, is then
given by

P ∗ =
Pφ + Pθ + Pη

insect mass
. (2.25)

2.6. Model validation

To test the compatibility of our model with results obtained from three-dimensional
Navier–Stokes simulations, we look at the cases of a fruitfly, a bumblebee, and a
hawkmoth flying with a horizontal stroke plane (θm = θ0 = 0) and a sinusoidally
varying azimuthal angle (corresponding to K → 0 in (2.10)). Here, we utilize the
same morphological and kinematic data as Sun & Du (2003) in order to compare
results (table 2). As mentioned in § 2.4, CT , CD(0), and CD(π/2) are obtained by fitting
lift and drag coefficient data from previous empirical studies (Dickinson et al. 1999;
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Insect M (mg) Mwing (mg) R (mm) c̄ (mm) Iwing (g cm2)

Fruitfly 0.72 8.6 × 10−4 2.02 0.67 0.80 × 10−8

Bumblebee 175 0.46 13.2 4.02 0.17 × 10−3

Hawkmoth 1648 47 51.9 18.26 0.184

Insect f (Hz) φm (deg.) CT CD(0) CD(π/2)

Fruitfly 254 75◦ 1.833 0.21 3.35
Bumblebee 116 58◦ 1.341 0 2.93
Hawkmoth 26.3 60.5◦ 1.678 0.07 3.06

Table 2. Morphological and kinematic parameters used for optimization and validation.

Insect Quantity Quasi-Steady CFD (Sun & Du)

Fruitfly L 1.003 1.0
P ∗ 24 30

Bumblebee L 0.95 1.0
P ∗ 53 56

Hawkmoth L 1.15 1.0
P ∗ 44 46

Table 3. Comparison between quasi-steady and CFD (P ∗ in units of Wkg−1).

Usherwood & Ellington 2002; Dudley & Ellington 1990a) to the forms CL(α) =
CT sin(2α) and CD(α) = CD(0) cos2 α + CD(π/2) sin2 α from (2.16)–(2.17). It should
be noted that these measurements are based on experiments involving dynamically
scaled models of the wings. As in Andersen et al. (2005a), CR is set to be equal to π
for all three insects. The mid-stroke angle of attack, αm, is chosen to have the values
44◦, 28◦, and 32◦ for the fruitfly, bumblebee, and hawkmoth, respectively, used in
Sun & Du (2003) for the sake of comparison. Finally, the non-dimensional viscous
torque parameters, µ1 and µ2, are both set to be equal to 0.2, which was taken from
Andersen et al. (2005 b) for cases at similar Reynolds numbers. The values of µ1

and µ2 have a small effect on the total power, largely resulting from the fact that
the power required to overcome translational drag dominates the power required to
overcome viscous torque. They were both tested in the range [0, 20], resulting in less
than 1 % change in both lift production and power consumption. Additionally, since
Sun & Du (2003) assume that the contribution of rotational power is negligible, Pη

is taken to be 0 for this section of the paper only.
As seen in table 3, the quasi-steady model agrees with the CFD calculations to

within approximately 15 %. For the fruitfly, L is predicted almost exactly, but the
specific power, P ∗, is slightly underestimated. In the case of the hawkmoth, though,
the specific power agrees well with the CFD calculation and the amount of lift
predicted is off by about 15 %. For the bumblebee, both the lift and power agree well
with the CFD results.

2.7. Optimization

Given the model of forces and biomechanics described in the previous sections, we
optimize the kinematic parameters listed in table 1 in order to minimize the mass-
specific power output of an insect (P ∗) with a fixed morphology. This is a nonlinear
optimization process with the constraint that L ! 1. The problem also is constrained
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by the physical limitations on the parameters listed in table 1 (i.e. 0 " φm " π/2). This
constrained optimization was converted into a more tractable problem by defining
the fitness, F , corresponding to parameter set Υ , by

F = P ∗ + rΘ(1 − L) + s
∑

j∈Υ

|ζj |
Maxj − Minj

(2.26)

where Θ(x) is the Heaviside step function, ζj is the distance that parameter j is outside
the range specified by Maxj and Minj given in table 1, and r, s are positive, real
parameters which specify the strength of the penalty for violating the lift and physical
constraints, respectively. For the optimizations to follow, we use r = s = 2000.

The procedure used here is a hybrid of the clustering genetic algorithm (GA) used
in Milano & Koumoutsakos (2002) for other fluid dynamics applications and a Powell
simplex algorithm (Powell 1970) for local optimization at the end. The GA is started
with a population of 200 parameter sets which are then evolved to be grouped in a
globally minimal basin. The initial sets are randomly chosen from all possible sets
within the range allowed by the values in table 1 in order to avoid biasing. After
narrowing the population sufficiently, the simplex algorithm was used to relax each
of the parameter sets found via the GA to the local optimum of the basin. All of
the results to follow are validated by multiple runs of the algorithm, each of which
matched to within the tolerance set for the simplex algorithm (relative tolerances of
10−10 for the fitness function and all parameters).

3. Optimization results
3.1. Optimized kinematics

Wing kinematics, force production, and power consumption resulting from the three
optimizations are shown in figure 4. Data from the optimizations are listed in tables 4
and 5. For the fruitfly, the optimal wing motion is largely flat but slightly U-
shaped, qualitatively similar to the observed kinematics (Ennos 1989; Fry et al. 2005).
Additionally, the force production and power consumption are relatively constant
along the mid-stroke, dropping off precipitously during wing rotation. For both the
bumblebee and hawkmoth motions, however, we see a figure-of-8 motion with a larger
stroke deviation (∼10◦) and less constant forces and powers during the mid-stroke.
The latter effect is especially pronounced for the power consumption.

Additionally, the frequencies of the optimized kinematics are similar to the observed
values. For the fruitfly, the optimized frequency of 234 Hz is within the measured
range of 210–260 Hz seen in empirical studies (Ennos 1989; Fry et al. 2005). For the
two larger insects, although the optimized frequencies are slower than the observed
values, there still exists a reasonable agreement between the optimization and empirical
data. Speifically, the optimized hawkmoth motion has a frequency of 19 Hz (observed
range: 24–26 Hz (Willmott & Ellington 1997), and the optimized bumblebee frequency
is 122 Hz (observed range: 145–155 Hz (Dudley & Ellington 1990a)).

Finally, for all three insects, the optimal motions are such that they produce nearly
exactly enough lift to hover, and not more (to within mg × 10−15). Since additional
lift production requires an increase in power consumption, the inequality constraint
placed upon the optimization acts more like an equality constraint (L ≡ 1 as opposed
to L ! 1). More will be said about this later.
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Figure 4. Kinematics, forces, and power for optimized wing motions. Top: the motion of the
wing chord with dots representing the wing’s leading edge. The arrows are the instantaneous
forces on the wing. Middle: the vertical forces (solid line) and the magnitude of horizontal
(dashed line) forces on the wing over one flapping period. Bottom: the total power output (thick
solid line) and its three components: Pφ (thin solid line), Pθ (dashed), and Pη (dot-dashed).

Fruitfly Bumblebee Hawkmoth

f (Hz) 234 122 19
φm (deg.) 90.0 90.0 90.0
θm (deg.) 3.1 12.3 8.1
ηm (deg.) 72.7 87.0 85.3
θ0 (deg.) −0.65 1.83 2.67
η0 (deg.) 90.0 −90.0 −90.0
K 0.704 0.925 0.796
Cη 2.375 1.223 0.711
N 2 2 2
Φθ (deg.) −70.6 −102.2 −109.2
Φη (deg.) −72.4 −91.8 −97.9

Table 4. Optimal parameters.

3.2. Kinematics with constrained stroke amplitudes

A possible explanation for the optimized frequencies being consistently lower than the
observed values lies in the fact that for all three optimizations, the stroke amplitude,
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Fruitfly Bumblebee Hawkmoth

L − 1 2.9 × 10−15 2.5 × 10−16 6.4 × 10−16

〈Fz〉/〈Drag〉rms 1.80 1.94 1.58
〈P Aero〉/〈P Inertial〉 3.74 .53 1.25
P ∗(W kg−1) 14.6 39.2 26.6

Table 5. Optimization results.
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Figure 5. Kinematics, forces, and powers for optimized wing motions with constrained φm

(layout is the same as in figure 4).

φm, is at the maximum allowed value of 90◦. Intuitively, this makes sense, as a larger
stroke amplitude allows a larger percentage of the period to be spent in the mid-
stroke, where most of the lift is generated. Hence, this additional generation of lift per
period allows a slower flapping frequency. Insects, however, are limited by additional
constraints which do not exist in our model. In particular, the cost for moving the
wing is likely to be a non-constant function of the stroke position (i.e. the cost required
to move a wing from φ = −15◦ to φ = 15◦ is different than the cost to move from
φ = 60◦ to φ = 90◦). Hence, it is of interest to observe the wing motions that result
from optimizing the kinematics while keeping φm fixed to the empirically observed
value (75◦ for the fruitfly, 58◦ for the bumblebee, and 60.5◦ for the hawkmoth).

Results from this optimization are shown in figure 5. For all three insects, the
decrease in φm results in a higher flapping frequency, as expected. Specifically, the
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Figure 6. Comparison between optimized (solid line) hawkmoth hovering kinematics and
observed data (dots) from Willmott & Ellington (1997).

frequencies resulting from this optimization with a constrained stroke amplitude were
268 Hz for the fruitfly, 164 Hz for the bumblebee, and 24 Hz for the hawkmoth.
Each of these values is within or only slightly above the empirically observed range
of frequencies. Also, it should be noted that although small changes exist between
the other stroke parameters, the wing motions, forces, and powers resulting from
optimizing with a constrained stroke amplitude do not differ qualitatively from the
non-constrained case. In particular, for the case of the hawkmoth (figure 6), we
see good agreement between the optimized solution and the wing stroke empirically
observed by Willmott & Ellington (1997). The primary disagreements between the
optimized and the observed strokes occur due to the lack of asymmetry in our
kinematic equations. However, for all three angles, there is quantitative agreement for
the amplitudes, phases, and the frequency, of the motion.

4. Sensitivity of optimal solutions
Given the optimized kinematics presented in figure 4 and table 4, we now investigate

the effects of perturbing various parameters on their lift and power production. This
is done to gain insight into why these particular parameters are optimal, as well
as to understand more fully the structure of the optimal basin. Figure 7 shows the
dependence of L and P ∗ for each of nine parameters for the hawkmoth, assuming all
the other parameters remain constant at their optimized values. Only the hawkmoth
analyses are shown here owing to the qualitative similarity between the sensitivity
analyses of all three of the insects studied here.

We see from these single-variable sensitivity analyses that although interplay exists
between the parameters, the location of the optimal value can be explained by only
three categories of behaviour. The first category contains parameters where a conflict
between lift production and power consumption affects the optimal value. These
three parameters (φm, θm, and ηm, figure 7a–c) are the amplitudes in the three angular
degrees of freedom. For the first two cases of φm and θm, an increased amplitude
corresponds to more lift production, but also results in strokes which require more
power. Hence, given our optimization’s constraint that L ! 1, the optimal values
for these parameters will be set by finding the minimal value where L = 1. This
helps to explain the result in § 3.1 where the inequality constraint of our optimization
becomes an equality constraint. Any deviation from the manifold where L = 1 would
result in either a violation of the lift constraint or an increase in power consumption.



Energy-minimizing kinematics in hovering insect flight 165

0

0.5

–0.6–0.4–0.2 0 0.2 0.4 0.6

1.0

1.5

2.0

L

10

15

20

25

30

P
*  

(W
 k

g–1
)

0 1 2 3 4 5
0.5

1.0

1.5

L

Cη

0

50

100

P
*  

(W
 k

g–1
)

–3 –2 –1 0 1 2 3
–2

–1

0

1

2

L

η0

θ0

Φη

–2

0

2

L

–3 –2 –1 0 1 2 3
0

50

100

P
*  

(W
 k

g–1
)

1.1

0.9

0.7

0.5

L

Φθ

–3 –2 –1 0 1 2 3
20

25

30

35

P
*  

(W
 k

g–1
)

0 0.2 0.4 0.8 1.0
0

0.5

1.0

1.5

K

25

30

35

40

P
*  

(W
 k

g–1
)

–1

0

0.5 1.0 1.5

1

2

L

L

0

60

0

120

180

P
*  

(W
 k

g–1
)

0
0

0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.0
(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

L

φm

20

40

P
*  

(W
 k

g–1
)

0

100

150

50

200
P

*  
(W

 k
g–1

)

0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

L

θm ηm

0

60

120

180

P
*  

(W
 k

g–1
)

Figure 7. Single-parameter sensitivity analyses for the hawkmoth. The solid lines show L
as a function of the given parameter, and the dashed lines represent the variation of P ∗.
The dot-dash vertical lines indicate the position of the optimal solution for the parameter in
question.

Similarly, for ηm, we see that for large values of the amplitude (corresponding to small
mid-stroke angles of attack), both the lift and power decrease monotonically. Hence,
the optimal value of ηm is the largest value such that the lift constraint is met.

The second category contains parameters where the optimized value is at or near
the global minimum with respect to P ∗ (namely, η0, Cη, Φη, and K , figure 7d–g).
Variations away from the optimum in these parameters tend to cause significant
increases in power consumption. The exception to this is K , but the optimal value
is the global minimum in P ∗ due to the relative flatness of the dependence of L on
the parameter. It also should be noted that all four of these parameters are directly
related to the speed and phase of wing rotation.

The final category of parameters is those where L is maximized irrespective of
power consumption (θ0 and Φθ , figure 7h, i). For these parameters, both related to
θ(t), the relatively small effect they have on P ∗ gives more importance to providing a
maximal amount of lift.

5. Rotational power and passive wing rotation
An interesting feature of the optimized kinematics is that the cost of pitching the

wing corresponds to only a small fraction of the total power consumption (1.4 % for
the fruitfly, 4.5 % for the bumblebee, and 5.6 % for the hawkmoth). In particular,
the optimal kinematics are such that the stroke maintains a constant leading edge
throughout a flapping period, as opposed to switching the leading edge during wing
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(a) (b)

Figure 8. Examples of wing kinematics with differing wing rotation strategies: (a) constant
leading edge, (b) alternating leading edge.

rotation (figure 8). This observation matches empirically observed results for nearly
all insects. Previously, the use of a single leading edge was assumed to occur for
structural (as opposed to aerodynamic) reasons, as the leading edge of the wing must
be relatively thick compared to the trailing edge, since the additional fluid forces
which occur at the trailing edge lead to greater stress on that portion of the wing
(Norberg 1972). Hence, a wing can be lighter if only one of its edges needs to be
made of the thicker material that a leading-edge side requires. Our model, however,
assumes a symmetry between the two edges of the wing. Hence, the fact that the wing
keeps the same leading edge through the optimization implies that there is another
reason for this rotation. What appears to occur is a passive–dynamic relationship
between the inertial forces required to flip the wing over and the fluid forces acting
on the wing during rotation. This effect is seen in figure 7(d), where both maximum
lift production and minimum power consumption occur at values where the stroke
maintains a constant leading edge (η0 = ±π/2). Conversely, the lift is minimized and
the power maximized at η0 = 0, corresponding to an alternating leading edge.

The sensitivity analysis, however, is not a full explanation for the optimal solution
using a single leading edge, as the interplay between different parameters may allow
more efficient strokes with alternating leading edges. To gain a better understanding,
we run the optimization described in § 2.7 but with the additional constraint that the
leading edge must switch at some point during the stroke. In other words, for every
flapping period, there exist times t1 and t2 such that v(t1) · c(t1) < 0 < v(t2) · c(t2) where
v(t) is the velocity vector at time t and c(t) points in the direction of the chord.

Performing this optimization (figure 9), we observe that maintaining a constant
leading edge results from the interplay between inertial and aerodynamic powers.
Specifically, the two powers largely cancel each other for the case of a single leading
edge, whereas they are additive in the case of the optimal kinematics for alternating
edges. The amount of power necessary for rotation increases by factors of 190 %, 88 %,
and 76 % for fruitfly, bumblebee, and hawkmoth, respectively, when an alternating
leading edge is mandated. These differences in efficiency can be explained by the
timing of the aerodynamic forces acting on the wing. For a single leading edge, the
aerodynamic torque facilitates the turning at the onset of rotation – the fluid is doing
work on the wing. For the case of alternating leading edges, however, the wing must
do work on the fluid while the wing attempts to accelerate and also does work on
the fluid while it decelerates. An energetic benefit exists on neither the onset nor
the resolution of rotation, resulting in the increased power consumption observed in
figure 9.

6. Summary
We have found and analysed the optimal wing kinematics for the hovering flight

of three insects of widely varying masses through the use of a quasi-steady model
of fluid forces on a thin plate and a hybrid optimizing algorithm. These solutions
minimize power consumption while still producing enough lift to sustain hovering
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Figure 9. Rotational power output for optimized wing motions: the rotational power
necessary to pitch the wing for an optimized stroke with either a single (top) or alternating
(bottom) leading edge for the three insects. The thick solid line is the total rotational power
consumption (Pη), the thin solid line represents the aerodynamic power, and the dashed line is
the inertial power. The kinematics from the top three plots are identical to those in figure 4,
whereas the kinematics in the bottom plots were generated by running the optimization
procedure with the added caveat that the leading edge is forced to switch at some point during
the stroke.

flight. We found that these kinematics capture several qualitative aspects of observed
flight and predict the observed flapping frequencies well. These agreements become
more striking if we fix a parameter by constraining the stroke amplitude, φm, to its
empirically observed value. We also have performed sensitivity analyses of the optimal
solutions. From these analyses, we determined the import and effect of varying the
kinematic parameters in our model. Finally, we observed that the optimal motions
used a single leading edge throughout the stroke, as opposed to alternating edges
during wing rotation. Previously thought to occur for purely structural reasons, we
found that maintaining a constant leading edge is advantageous due to an interplay
between inertial and aerodynamic power. Future work will involve studying the
problem from more of a dynamics perspective, investigating not only the interaction
between an insect’s wings and the surrounding fluid, but also coupling these objects
to the motion of the body.

This work was supported by the NSF, AFOSR, and the Packard Foundation.
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