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Abstract

In immersed interface methods, solids in a fluid are represented by singular forces in the Navier–Stokes equations, and flow jump
conditions induced by the singular forces directly enter into numerical schemes. This paper focuses on the implementation of an
immersed interface method for simulating fluid–solid interaction in 3D. The method employs the MAC scheme for the spatial discret-
ization, the RK4 scheme for the time integration, and an FFT-based Poisson solver for the pressure Poisson equation. A fluid–solid inter-
face is tracked by Lagrangian markers. Intersections of the interface with MAC grid lines identify finite difference stencils on which jump
contributions to finite difference schemes are needed. To find the intersections and to interpolate jump conditions from the Lagrangian
markers to the intersections, parametric triangulation of the interface is used. The velocity of the Lagrangian markers is interpolated
directly from surrounding MAC grid nodes with interpolation schemes accounting for jump conditions. Numerical examples demon-
strate that (1) the method has near second-order accuracy in the infinity norm for velocity, and the accuracy for pressure is between first
and second order; (2) the method conserves the volume enclosed by a no-penetration boundary; and (3) the method can efficiently handle
multiple moving solids with ease.
Published by Elsevier B.V.
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R1. Introduction

Immersed interface methods are offspring of the
immersed boundary method. The original immersed
boundary method was proposed by Peskin to simulate
blood flow in the human heart [20,21]. It treats heart walls
and heart valves as fiber-reinforced fluid. The immersed
boundary method is therefore a mathematical formulation,
in which the effects of solid boundaries are formulated as
forces in the Navier–Stokes equations. The forces are
determined from boundary configurations according to
constitutive laws. They involve the form of the Dirac d
function and are thus called singular forces. The immersed
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boundary method has been applied to a wide variety of
problems, especially biological flows, as summarized in
[23]. When applied to flow simulation, an immersed inter-
face method shares the same mathematical formulation
as the immersed boundary method, which reads

ov

ot
þr � ðvvÞ ¼ �rp þ 1

Re
Dv

þ
Z

B
fða1; a2; tÞdðx� Xða1; a2; tÞÞda1 da2;

ð1Þ
r � v ¼ 0; ð2Þ

where v is velocity, p is pressure, t is time, Re is the Rey-
nolds number, B is the boundary of a solid,
dðx� Xða1; a2; tÞÞ is the 3D Dirac d function, x is Cartesian
coordinates, Xða1; a2; tÞ is the coordinates of the boundary,
sed interface method for fluid–solid interaction, Comput. Meth-
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and f is the density of a singular force in the parameter
space which is formed by two Lagrangian parameters a1

and a2 parameterizing the boundary B as shown in
Fig. 1. In the above formulation, only one boundary, the
boundary B, is considered. This formulation is used hereaf-
ter for the presentation of this paper. If multiple bound-
aries are considered, they can be easily included in the
same manner.

In the immersed boundary method, the boundary of an
immersed solid is tracked by Lagrangian markers that are
convected by a fluid. Numerically, the communication
between the solid and the fluid is obtained by spreading
the singular forces from the Lagrangian markers to nearby
Cartesian grid nodes and interpolating the velocity from
nearby Cartesian grid nodes to the Lagrangian markers
with the use of discrete Dirac d functions. Many research
efforts have been devoted to analyze and improve the accu-
racy, stability, conservation, and robustness of the
immersed boundary method [3,28,22,25,27,5,12,34]. Moti-
vated to improve the accuracy of the immersed boundary
method from first order to second order, LeVeque and Li
[15,16] proposed immersed interface methods. To avoid
the use of discrete Dirac d functions, an immersed interface
method directly incorporates singularity-induced jump
conditions of flow quantities into finite difference schemes,
which gives it second-order or higher accuracy, sharp fluid–
solid interfaces, and very good conservation of mass
enclosed by no-penetration boundaries.

Immersed interface methods were initially proposed for
elliptic equations [15] and the Stokes equations [16]. Later,
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Fig. 1. A parametrized boundary in a Cartesian coordinate system.
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Fig. 2. Examples for generalized Taylor expansion and finite differences: (a) a
discontinuities.
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they were extended to 1D nonlinear parabolic equations
[30], Poisson equations with Neumann boundary condi-
tions [8], elliptic equations with variable coefficients
[31,6,2], and the 2D Navier–Stokes equations
[17,14,19,33,13]. These various methods are summarized
in the recent book by Li and Ito [18].

To extend immersed interface methods to the 3D
Navier–Stokes equations, necessary jump conditions have
been systematically derived by Xu and Wang [32]. A list
of these jump conditions is given in Section 3. The incorpo-
ration of jump conditions into finite difference schemes is
based on the following generalized Taylor expansion [32]:

gðs�mþ1Þ ¼
X1
n¼0

gðnÞðsþ0 Þ
n!

ðsmþ1 � s0Þ þ
Xm

l¼1

X1
n¼0

½gðnÞðslÞ�
n!

�ðsmþ1 � slÞn; ð3Þ

where g(s) is a non-smooth and discontinuous function as
shown in Fig. 2a, and ½gðnÞðslÞ� denotes jump conditions
along the s-axis, i.e. ½gðnÞðslÞ� ¼ gðnÞðsþl Þ � gðnÞðs�l Þ. Second-
order central finite difference schemes with discontinuities
at n and g on its stencil shown in Fig. 2b can be modified
as follows to keep their second-order accuracy:

dgðs�i Þ
ds

¼ gðs�iþ1Þ�gðsþi�1Þ
2h

þ 1

2h

X2

n¼0

�½gðnÞðnÞ�
n!

ðsi�1�nÞn
 

�
X2

n¼0

½gðnÞðgÞ�
n!

ðsiþ1�gÞn
!
þOðh2Þ; ð4Þ

d2gðs�i Þ
ds2

¼ gðs�iþ1Þ�2gðsiÞþgðsþi�1Þ
h2

� 1

h2

X3

n¼0

�½gðnÞðnÞ�
n!

ðsi�1�nÞn
 

þ
X3

n¼0

½gðnÞðgÞ�
n!

ðsiþ1�gÞn
!
þOðh2Þ: ð5Þ

An interpolation scheme also needs to account for jump
conditions if its interpolation stencil contains discontinu-
ities. The following second-order interpolation scheme ap-
plies to the case shown in Fig. 2b

gðsiÞ ¼
gðsþi�1Þ þ gðs�iþ1Þ

2
þ Oðh2Þ þ 1

2

ogðnÞ
os

� �
ðsi�1 � nÞ

� 1

2

ogðgÞ
os

� �
ðsiþ1 � gÞ: ð6Þ

The jump conditions derived in [32] have been employed in
an immersed interface method to simulate the interaction
1

s

i–1s is i+1sηξ

h h

s

b

non-smooth and discontinuous function, (b) a finite difference stencil with
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of a fluid with moving boundaries in 2D [33,1]. Simulation
results indicate that the 2D immersed interface method (1)
achieves near second-order accuracy in the infinity norm
for both velocity and pressure, (2) introduces relatively
insignificant cost with the addition of a solid in a simula-
tion, and (3) conserves volumes enclosed by non-penetra-
tion boundaries.

In this paper, the derived jump conditions are used in an
immersed interface method to simulate fluid–solid interac-
tion in 3D. Compared with the existing 3D immersed
boundary method, the current method has the improve-
ments on spatial accuracy and resolution. It achieves near
second-order accuracy in the infinity norm for the velocity,
the accuracy for the pressure is between first and second
order, and it does not smear sharp fluid–solid interfaces.
Compared with body-fitted grid methods, the current
method has the advantage in efficiency for moving bound-
ary problems. Because of the use of a fixed Cartesian grid
for fluids and Lagrangian markers for moving boundaries,
the method does not need costly 3D grid regeneration,
which is required in body-fitted grid methods. As shown
in Section 6, the cost count of the current method in each
time step is OðN ln NÞ þ OðM ln MÞ þ OðNÞ þ OðMÞ, where
N is the total number of Cartesian grid nodes and M is
the total number of Lagrangian markers.

This paper is organized as follows. In Section 2, an over-
view of the method is given, which summarizes the major
components needed by the method. Each major component
is then presented in following sections. In Section 3, linear
systems to determine jump conditions are listed. These jump
conditions are the necessary ones to be incorporated into
finite difference schemes. In Section 4, parametric triangula-
tion of an interface is introduced. The parametric triangula-
tion is used to identify finite difference stencils which pass
across a fluid–solid interface. In Section 5, the interpolation
of the velocity on staggered grid nodes and Lagrangian
markers is presented. In Section 6, the major procedures
of the current method are listed along with their cost counts.
In Section 7, numerical examples are given to demonstrate
the accuracy, conservation, and efficiency of the method.
Last, Section 8 concludes the paper.
 O

Δ x

Δ y

Δ z

p

v

w

u

z y

x

(i+1/2, j, k)(i, j, k)

(i, j, k+1/2)

(i, j+1/2, k)

Fig. 3. Arrangements of the velocity components and the pressure on an
MAC grid.
U
N

C2. Overview of the method

Taking the divergence of the momentum equation, Eq.
(1), the pressure Poisson equation is obtained, which reads

Dp ¼ � oD
ot
þr � ð2vDÞ � 1

Re
DD

� �
þ sp

þr �
Z

B
fða1; a2; tÞdðx� Xða1; a2; tÞÞda1 da2

� �
; ð7Þ

where D = $ Æ v is the divergence of the velocity, and sp is

sp ¼ 2
ou
ox

ov
oy
� ou

oy
ov
ox

�
þ ou

ox
ow
oz
� ou

oz
ow
ox
þ ov

oy
ow
oz
� ov

oz
ow
oy

�
:

ð8Þ
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Terms with the divergence D are kept in Eq. (7) to better
enforce the divergence-free condition, and oD

ot is discretized
by assuming D = 0 at the next time level.

The current method solves the momentum equation, Eq.
(1), and the pressure Poisson equation, Eq. (7), using the
MAC scheme, the fourth-order Runge–Kutta temporal
integration, and an FFT-based Poisson solver. A MAC
grid is a staggered Cartesian grid, on which the pressure
p and the velocity components u, v, and w are arranged
as in Fig. 3. Define the central finite difference operators
dx; dy ; dz; dxx; dyy , and dzz as

dxð�Þi;j;k ¼
ð�Þiþ1

2;j;k
� ð�Þi�1

2;j;k

Dx
þ cxð�Þi;j;k; ð9Þ

dyð�Þi;j;k ¼
ð�Þi;jþ1

2;k
� ð�Þi;j�1

2;k

Dy
þ cyð�Þi;j;k; ð10Þ

dzð�Þi;j;k ¼
ð�Þi;j;kþ1

2
� ð�Þi;j;k�1

2

Dz
þ czð�Þi;j;k; ð11Þ

dxxð�Þi;j;k ¼
ð�Þiþ1;j;k � 2ð�Þi;j;k þ ð�Þi�1;j;k

Dx2
þ cxxð�Þi;j;k; ð12Þ

dyyð�Þi;j;k ¼
ð�Þi;jþ1;k � 2ð�Þi;j;k þ ð�Þi;j�1;k

Dy2
þ cyyð�Þi;j;k; ð13Þ

dzzð�Þi;j;k ¼
ð�Þi;j;kþ1 � 2ð�Þi;j;k þ ð�Þi;j;k�1

Dz2
þ czzð�Þi;j;k; ð14Þ

where Dx; Dy; Dz are the spatial steps as shown in Fig. 3,
and cx; cy ; cz; cxx; cyy , and czz are jump contributions. If
the stencils of the above finite difference operators do not
cross any fluid–solid interface, the jump contributions are
zero, and usual central finite difference schemes are recov-
ered. If the stencils of the above finite difference operators
cross a fluid–solid interface, the jump contributions are
non-zero, and they can be calculated according to Eqs.
(4) and (5).

With these central finite difference operators, the
momentum equation, Eq. (1), and the pressure Poisson
equation, Eq. (7), are spatially discretized as follows. The
sed interface method for fluid–solid interaction, Comput. Meth-
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spatially discretized momentum equation for the velocity
component u at iþ 1

2
; j; k

� �
can be written as

ou
ot
¼�dxðuuÞ � dyðvuÞ � dzðwuÞ � dxpþ

1

Re
ðdxxþ dyy þ dzzÞu;

ð15Þ

where the subscript iþ 1
2
; j; k

� �
is neglected in the opera-

tors. The similar equations for v at i; jþ 1
2
; k

� �
and w at

i; j; k þ 1
2

� �
can be obtained. The spatially discretized pres-

sure Poisson equation at (i, j,k) can be written as

ðdxx þ dyy þ dzzÞp ¼ �
oD
ot
� 2ðdxðuDÞ þ dyðvDÞ

þ dzðwDÞÞ þ 1

Re
ðdxx þ dyy þ dzzÞDþ s�p;

ð16Þ

where s�p is calculated at (i, j,k) as

s�p¼ 2ðdxudyv�dyudxvþdxudzw�dzudxwþdyvdzw�dzvdywÞ:
ð17Þ

Eqs. (15)–(17) and the discretized equations for v and w

needs the values of the velocity components at the grid
nodes with subscripts listed in Table 1. They can be inter-
polated from uiþ1

2;j;k
; vi;jþ1

2;k
, and wi;j;kþ1

2
. The interpolation

schemes are given in Section 5.
The RK4 temporal integration is used to march Eq. (15)

and the spatially discretized equations for v and w in time.
The reason to choose an explicit scheme is to be consistent
with the explicit treatment of the motions of fluid–solid
interfaces and the singular forces on the interfaces, which
are functions of interface configurations. The reason to
choose a high order scheme is to ensure numerical stability
in the flow regime of moderate Reynolds numbers consid-
ered here. As pointed out by Johnston and Liu [9,10] and
Weinan and Liu [7], high order explicit schemes are appro-
priate for flows of moderate to high Reynolds numbers,
where viscous time step constraint is less restrictive than
the convective one. The stability region of the RK4 scheme
includes a portion of the imaginary axis, which ensures
numerical stability of the background flow solver for the
current flow regime.

Eq. (16) is a discretized Poisson equation as oD
ot is approx-

imated by assuming D = 0 at the next time level, and it is
solved in each substep of the RK4 temporal integration,
as shown in [33]. Since the MAC grid is uniform in the cur-
rent method, an FFT-based Poisson solver is adopted. The
FFT-based Poisson solver can handle periodic boundary
conditions and inhomogeneous Dirichlet, Neumann, and
Table 1
Subscripts of MAC grid nodes where velocity components need to be
interpolated

u i, j,k iþ 1
2 ; jþ 1

2 ; k iþ 1
2 ; j; k þ 1

2 i; jþ 1
2 ; k i; j; k þ 1

2

v i, j,k iþ 1
2 ; jþ 1

2 ; k i; jþ 1
2 ; k þ 1

2 iþ 1
2 ; j; k i; j; k þ 1

2

w i, j,k iþ 1
2 ; j; k þ 1

2 i; jþ 1
2 ; k þ 1

2 iþ 1
2 ; j; k i; jþ 1

2 ; k
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mixed boundary conditions by using FFT, sine, cosine,
and quarter wave transformations, respectively [24].

A summary of the major components required by the
current method can be given below.

• As indicated by Eqs. (4)–(6), necessary jump conditions
are needed to obtain jump contributions in finite differ-
ence and interpolation schemes for Eqs. (15)–(17) and
the spatially discretized equations for v and w.

• Jump contributions are non-zero only if the stencils of
finite difference and interpolation schemes cross fluid–
solid interfaces. In order to distinguish these stencils,
the intersections between MAC grid lines and the inter-
faces need to be identified, including the coordinates of
the intersections and the necessary jump conditions at
the intersections.

• A fluid–solid interface follows the motion of the sur-
rounding fluid. The fluid velocity is solved on MAC grid
nodes, but the location of the interface is updated using
the velocity of Lagrangian markers distributed on the
interface. The velocity of Lagrangian markers needs to
be interpolated from surrounding MAC grid nodes.
267267

268

269

270

271

272
E
D3. Computing the jump conditions

The derivation of jump conditions listed in this section
can be found in [32]. The formulas for the jump conditions
in this section are different from those in [32], but they are
equivalent mathematically. The formulas given in this sec-
tion are more amenable to numerical implementation.

The tangent vectors s and b, and the normal vector n

shown in Fig. 1 appear in the expressions for the jump con-
ditions below. They are defined as follows:

s ¼ ðs1; s2; s3Þ ¼
oX

oa1

¼ oX
oa1

;
oY
oa1

;
oZ
oa1

� �
; ð18Þ

b ¼ ðb1; b2; b3Þ ¼
oX

oa2

¼ oX
oa2

;
oY
oa2

;
oZ
oa2

� �
; ð19Þ

n ¼ ðn1; n2; n3Þ ¼ s� b: ð20Þ

The parameters a1 and a2 are chosen such that the vector n

points to outside a solid. In addition, the following defini-
tions are used:

J ¼ knk; ð21Þ

n� ¼ n

J
; ð22Þ

F ¼ f

J
; ð23Þ

F n ¼ F � n�; ð24Þ
Fs ¼ F� F nn�; ð25Þ

where n* is the unit normal vector, and F is the density of
singular force in the Cartesian space. In the numerical
examples presented in Section 7, the force density F is cal-
culated based on force models that relate the force density
F to the configuration of the Lagrangian markers. The
sed interface method for fluid–solid interaction, Comput. Meth-
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force models are given in each numerical example in Sec-
tion 7.

The jump conditions for the velocity and the pressure
are
½v� ¼ 0; ð26Þ
½p� ¼ F n: ð27Þ
304304
The jump conditions for the first derivatives of the
velocity satisfy
305

306
C1

ov
ox
ov
oy

ov
oz

2
64

3
75 ¼

0

0

�ReJFs

0
B@

1
CA; ð28Þ
308308

309
where ½�� denotes jump conditions along the direction of n,
and the coefficient matrix C1 is
310
311
C1 ¼
s1 s2 s3

b1 b2 b3

n1 n2 n3

0
B@

1
CA: ð29Þ
The jump conditions for the first derivatives of the pres-
sure satisfy
T

313313

314
CC1

op
ox
op
oy

op
oz

2
664

3
775 ¼

oF n
oa1

oF n
oa2

o~f 1

oa1
þ o~f 2

oa2

0
BB@

1
CCA; ð30Þ
315

316

317
R
E

where the contravariant components ~f 1 and ~f 2 in the
parameter space are calculated by
318

319

320

321
R~f 1 ¼ ðb� n�Þ � F; ð31Þ
~f 2 ¼ ðn� � sÞ � F: ð32Þ
322

323

324
O

The jump conditions for the second derivatives of the
velocity satisfy
 C 325

326

327

328

329

330

331

332
U
N

C2

o2v
ox ox

o2v
ox oy

o2v
ox oz

o2v
oy oy

o2v
oy oz

o2v
oz oz

2
666666666664

3
777777777775
¼

0

0

0

�Re oJFs
oa1

�Re oJFs
oa2

Re½rp�

0
BBBBBBBBB@

1
CCCCCCCCCA
�

o2X
oa1 oa1

o2Y
oa1 oa1

o2Z
oa1 oa1

o2X
oa2 oa2

o2Y
oa2 oa2

o2Z
oa2 oa2

o2X
oa1 oa2

o2Y
oa1 oa2

o2Z
oa1 oa2

on1

oa1

on2

oa1

on3

oa1

on1

oa2

on2

oa2

on3

oa2

0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ov
ox
ov
oy

ov
oz

2
64

3
75;

ð33Þ
333
where the coefficient matrix C2 is
Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.012
E
D

P
R

O
O

F

C2 ¼
s1s1 s1s2þ s2s1 s1s3þ s3s1 s2s2 s2s3þ s3s2 s3s3

b1b1 b1b2þb2b1 b1b3þb3b1 b2b2 b2b3þb3b2 b3b3

s1b1 s1b2þ s2b1 s1b3þ s3b1 s2b2 s2b3þ s3b2 s3b3

s1n1 s1n2þ s2n1 s1n3þ s3n1 s2n2 s2n3þ s3n2 s3n3

b1n1 b1n2þb2n1 b1n3þb3n1 b2n2 b2n3þb3n2 b3n3

1 0 0 1 0 1

0
BBBBBBBB@

1
CCCCCCCCA
;

ð34Þ

and on
oa1
¼ on1

oa1
; on2

oa1
; on3

oa1

� 	
and on

oa2
¼ on1

oa2
; on2

oa2
; on3

oa2

� 	
are calculated

numerically according to

on

oa1

¼ o2X

oa1 oa1

� bþ s� o2X

oa1 oa2

; ð35Þ

on

oa2

¼ o2X

oa1 oa2

� bþ s� o2X

oa2 oa2

: ð36Þ

The jump conditions for the second derivatives of the pres-
sure satisfy

C2

o2p
oxox

o2p
oxoy

o2p
oxoz

o2p
oy oy

o2p
oy oz

o2p
ozoz

2
6666666666664

3
7777777777775
¼

o2F n
oa1 oa1

o2F n
oa2 oa2

o2F n
oa1 oa2

o
oa1

o~f 1

oa1
þ o~f 2

oa2

� 	
o

oa2

o~f 1

oa1
þ o~f 2

oa2

� 	
½r � ðv �rvÞ�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
�

o2X
oa1 oa1

o2Y
oa1 oa1

o2Z
oa1 oa1

o2X
oa2 oa2

o2Y
oa2 oa2

o2Z
oa2 oa2

o2X
oa1 oa2

o2Y
oa1 oa2

o2Z
oa1 oa2

on1

oa1

on2

oa1

on3

oa1

on1

oa2

on2

oa2

on3

oa2

0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

op
ox
op
oy

op
oz

2
664
3
775:

ð37Þ

The calculation of surface derivatives with respect to a1 and
a2 is presented in Section 4. The non-singularity (except at
the two poles of a spherical interface) of the coefficient
matrices C1 and C2 is proved in [32]. The small linear sys-
tems given by Eqs. (28), (30), (33) and (37) can be solved
analytically, as shown in Appendix .

A flow quantity at a fixed point in space may have a
jump in terms of time when a fluid–solid interface crosses
the point, and a temporal jump condition can be related
to a corresponding spatial jump condition [32,33]. In simu-
lation of viscous flow, the incorporation of temporal jump
conditions in temporal discretization has negligible effect
on simulation results [33]. In the current method, temporal
jump conditions are not included.
4. Parametric triangulation of an interface

The current method considers immersed solids whose
surfaces are smooth, orientable, and topologically equiva-
lent to a sphere or a torus.
4.1. Interface parametrization

The parametrization of an ellipsoidal shape is
sed interface method for fluid–solid interaction, Comput. Meth-
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X s ¼ a sinða1Þ cosða2Þ; ð38Þ
Y s ¼ b sinða1Þ sinða2Þ; ð39Þ
Zs ¼ c cosða1Þ; ð40Þ

where the coordinates ðX s; Y s; ZsÞ are used to express the
shape, a and b are the equatorial radii along the x- and
y-axes, c is the polar radius along the z-axis, and
a1 2 ½0; p� and a2 2 ½0; 2p�. The coordinates ðX ; Y ; ZÞ of
an ellipsoidal fluid–solid interface are related to the shape
coordinates ðX s; Y s; ZsÞ through translation and rotation
transformations. The interface is spherical if a = b = c. A
Lagrangian interface mesh as illustrated in Fig. 4a is gener-
ated with the following parameter discretization:

a1m1
¼ Da1

2
þ m1Da1; m1 ¼ 0; 1; . . . ;M1; ð41Þ

a2m2
¼ m2Da2; m2 ¼ 0; 1; . . . ;M2; ð42Þ

where Da1 ¼ p
M1þ1

;Da2 ¼ 2p
M2

, and M2 is an even integer. The
interface is tracked by Lagrangian markers located at the
nodes of the interface mesh. The integers M1 and M2 are
chosen such that the maximum distance between two
neighboring Lagrangian markers is about the spatial step
of the background MAC grid. The jump conditions in Sec-
tion 3 are calculated at the Lagrangian markers. The total
number of the Lagrangian markers on the interface is
U
N
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T 381381
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383
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Fig. 4. Interface parametrization and interface meshes: (a) a sphere, (b) a
torus.
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Fig. 5. Periodicity of an ellipsoidal interface: (a) formation of a clo
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M = M1(M2 � 1). No Lagrangian markers locate at the
two poles corresponding to a1 = 0 and a1 = p. At the two
poles, J = 0, and many equations in Section 3 have J in
denominators of fractions. Realizing that the force density
in the Cartesian space, F ¼ f

J, is finite at the two poles, it
can be shown that these fractions are also finite at the
two poles. The current choice of the Lagrangian interface
mesh excludes the two poles, so the values of these frac-
tions at the two poles are not needed. Otherwise numerical
extrapolation has to be applied.

The ellipsoidal interface is periodic in a2. The first deriv-
atives with respect to a2 in Section 3 are calculated numer-
ically using periodic cubic splines. The second derivatives
with respect to a2 are calculated from their corresponding
first derivatives also using periodic cubic splines. In order
to use periodic cubic splines to calculate surface derivatives
with respect to a1, a closed smooth curve on the interface
for each a2m2

2 ½0; p� is composed by two branches corre-
sponding to values of a2m2

and pþ a2m2
, as demonstrated

in Fig. 5a. So M2 has to be even. It can be shown that
the functions JFs, ~f 1, and o~f 1

oa1
þ o~f 2

oa2
are continuous at the

two poles and smooth away from the two poles on this
closed curve. All other functions to be differentiated with
respect to a1 in Section 3 are smooth on the curve. On
the branch corresponding to a2 ¼ a2m2

,

a�1 ¼ a1; ð43Þ
on

oan
1

¼ on

oa�n1

; ð44Þ

where a�1 is defined in Fig. 5a, and n ¼ 0; 1; 2; . . . On the
branch corresponding to a2 ¼ pþ a2m2

,

a�1 ¼ 2p� a1; ð45Þ
o2n

oa2n
1

¼ o2n

oa�2n
1

; ð46Þ

o2nþ1

oa2nþ1
1

¼ � o2nþ1

oa�2nþ1
1

: ð47Þ

Thus, periodic cubic splines with respect to a�1 can be used
to calculate on

oan
1

with the above transformations. The cost
count to compute all the surface derivatives in Section 3
is OðMÞ.
α2

α1π

π

2π

2π

0

q

p

o

sed curve past the two poles, (b) composition of periodic data.
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Because of the differentiation along the interface, it is
important to maintain the smoothness of the interface for
numerical stability. The current method employs Fourier
filtering to smooth the interpolated velocity of Lagrangian
markers on the interface. The interpolation approach is
presented in Section 5. To filter in the direction of a2, ori-
ginal data defined on the parameter regions ‘‘o’’ and ‘‘p’’ in
Fig. 5b are directly used because of their periodicity in a2.
To filter in the direction of a1, data defined on the param-
eter regions ‘‘o’’ and ‘‘q’’ in Fig. 5b are used, where data on
the region ‘‘q’’ are obtained by re-organize the data on the
region ‘‘p’’, as illustrated in Fig. 5b. It is required that a1

start at Da1

2
and end at p� Da1

2
. The cost count of Fourier fil-

tering is OðM ln MÞ. The surface derivatives in Section 3
can also be computed using Fourier transformations with
more cost than periodic cubic splines.

The parametrization of a torus is given by

X s ¼ r cosða1Þ; ð48Þ
Y s ¼ ðRþ r sinða1ÞÞ cosða2Þ; ð49Þ
Zs ¼ ðRþ r sinða1ÞÞ sinða2Þ; ð50Þ

where R is the distance from the center of the torus tube to
the center of the torus, r is the radius of the tube, and
a1 2 ½0; 2p� and a2 2 ½0; 2p�. A Lagrangian interface mesh
as illustrated in Fig. 4b is generated with the following
parameter discretization:

a1m1
¼ m1Da1; m1 ¼ 0; 1; . . . ;M1; ð51Þ

a2m2
¼ m2Da2; m2 ¼ 0; 1; . . . ;M2; ð52Þ

where Da1 ¼ 2p
M1

and Da2 ¼ 2p
M2

. The total number of the
Lagrangian markers on the torus is
M ¼ ðM1 � 1ÞðM2 � 1Þ. The torus has periodicity in the
both directions of a1 and a2. So implementation of periodic
cubic splines to calculate surface derivatives and Fourier
filtering to smooth the torus is straightforward.

4.2. Interface triangulation

As illustrated in Fig. 6, an interface are be approximated
by small triangular patches formed from neighboring
Lagrangian markers. In Fig. 6, two triangular patches,
DP 1P 2P 4 and DP 2P 3P 4, are formed from four neighboring
Lagrangian markers (nodes of the interface mesh):
P 1ða1m1

; a2m2
Þ; P 2ða1m1

þ Da1; a2m2
Þ; P 3ða1m1

þ Da1; a2m2
þ D

a2Þ, and P 4ða1m1
; a2m2

þ Da2Þ. The parametrization of an
ellipsoidal interface leaves two holes at the two poles.
The two holes are covered by triangular patches as illus-
trated for the hole at a1 = 0 in Fig. 7.

The intersections between an interface and MAC grid
lines are found by projecting triangular patches along the
x-, y-, and z-axes. Here the triangular patch DP1P2P4 in
Fig. 8 is taken as an example. To find the intersections
between this triangular patch and MAC grid lines parallel
to the z-axis, DP1P2P4 is projected to the x–y plane along
the z-axis to obtain the projection DQ1Q2Q4, which is con-
tained inside a rectangle I II III IV. The rectangle is used to
Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.012
determine MAC grid lines which are parallel to the z-axis
and may intersect DP1P2P4. If the projection QX(xI,yJ) of
such a MAC grid line l, where I = i or iþ 1

2
and J = j or

jþ 1
2
, falls inside DQ1Q2Q4 (as the case in Fig. 8), on the

edges of DQ1Q2Q4, or on the vertices of DQ1Q2Q4, the
MAC grid line l intersects the triangular patch DP1P2P4

at the corresponding locations. The intersection is denoted
as the point PX in Fig. 8.

The x- and y-coordinates of the intersection PX are
(xI,yJ). The z-coordinate and the necessary jump condi-
tions at the intersection PX are interpolated from the three
vertices P1, P2, and P4, where the values of the three Carte-
sian coordinates, the two Lagrangian parameters, and the
necessary jump conditions are all known. If DP1P2P4 is
not a triangular patch which covers the hole at a pole of
an ellipsoidal interface, the following linear interpolation
is used:

gða1; a2Þ ¼ cg0 þ cg1a1 þ cg2a2; ð53Þ

where g can be a Cartesian coordinate of an interface or a
jump condition across an interface, and cg0, cg1, and cg2 are
constants. The constants cg0, cg1, and cg2 are determined
from the vertices in the following linear system:

gða1m1
; a2m2

Þ ¼ cg0 þ cg1a1m1
þ cg2a2m2

; ð54Þ
gða1m1

þ Da1; a2m2
Þ ¼ cg0 þ cg1ða1m1

þ Da1Þ þ cg2a2m2
; ð55Þ

gða1m1
; a2m2

þ Da1Þ ¼ cg0 þ cg1a1m1
þ cg2ða2m2

þ Da2Þ: ð56Þ
sed interface method for fluid–solid interaction, Comput. Meth-
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Fig. 9. Intersection on an edge: (a) recorded, (b) discarded.
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Fig. 10. Intersection on a vertex: (a) recorded, (b) discarded.
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The values of the two parameters, a1 and a2, at the intersec-
tion PX are determined from

xI ¼ cg0 þ cg1a1 þ cg2a2; ð57Þ
yJ ¼ cg0 þ cg1a1 þ cg2a2: ð58Þ

This interpolation is of second-order accuracy in terms of
Da1 and Da2. If DP1P2P4 is a triangular patch which covers
the hole at a pole of an ellipsoidal interface, the following
area-based interpolation formula is used instead:

gðP X Þ ¼
ag1gðP 1Þ þ ag2gðP 2Þ þ ag4gðP 4Þ

ag1 þ ag2 þ ag4

; ð59Þ

where ag1, ag2, and ag4 are net areas calculated as follows:

ag1 ¼ ðr2 � r4Þ � ez; ð60Þ
ag2 ¼ ðr4 � r1Þ � ez; ð61Þ
ag4 ¼ ðr1 � r2Þ � ez; ð62Þ

where the vectors r1, r2, and r4 are defined in Fig. 8, and ez

is the unit basis vector of the z-axis.
After all the coordinates of the point PX and all the nec-

essary jump conditions at the point PX are known, finite
difference stencils which contain the point PX are identified,
and jump contributions to usual finite differences on these
stencils are calculated. The above considers the situation in
which MAC grid lines are parallel to the z-axis. A similar
consideration applies to the other two directions. Before
ending this section, some special situations which need spe-
cial care are described below.

When an intersection falls on an edge (as in Fig. 9) or a
vertex (as in Fig. 10) of a triangular patch, it is important
to ensure that the intersection is not missed or repeated.
First, the intersections falls on the edges represented by
Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.012
E
Ddashed lines or the vertices represented by open circles in

Fig. 6 are not counted to avoid repetition. Second, if a
MAC grid line is aligned with a triangular patch (the area
of its projection is zero), the MAC grid line is regarded
either parallel or tangential to the patch, and no intersec-
tion is recorded. Third, when an intersection falls on an
edge but not a vertex of a triangular patch, it is counted
only if the patch is oriented with respect to the correspond-
ing MAC grid line in the same way as the adjacent patch,
as illustrated in Fig. 9, where the orientation of the patches
in Fig. 9 is defined as the sign of the z-component of the
normal direction n*. Fourth, when the intersection is on a
vertex, it is kept only if the projection of the vertex falls
inside the polygon formed by the projection of all the trian-
gular patches that share this common vertex, as illustrated
in Fig. 10.

The equation of a projected edge can have different
forms. For example the equation of the edge Q1Q2 in
Fig. 8 can be written in the two forms as follows:

ðy � Y 1ÞðX 2 � X 1Þ ¼ ðx� X 1ÞðY 2 � Y 1Þ; ð63Þ
ðy � Y 2ÞðX 1 � X 2Þ ¼ ðx� X 2ÞðY 1 � Y 2Þ; ð64Þ

where (X1,Y1) and (X2,Y2) are the coordinates of the
points Q1 and Q2, respectively. When determining whether
the point QX falls inside DQ1Q2Q4, on the edge Q1Q2, or
inside the neighboring triangle sharing the same edge
Q1Q2, the same form of the equation of the edge Q1Q2

has to be used for the two adjacent triangles. Otherwise,
the intersection PX may be missed or repeated in counting
due to rounding errors if the point QX falls on or is very
close to the edge Q1Q2. This is a very trivial case, but it
sed interface method for fluid–solid interaction, Comput. Meth-
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happens in practice. Finally, a crude check on intersection
finding is the total number of intersections. It should be
even.

An intersection on a triangular patch may coincide with
a MAC grid node. If this occurs, the intersection is
regarded at either one side or the other of the grid node
along the x-, y-, and z-axes. When computing jump contri-
butions to finite difference or interpolation schemes along
each axis, a consistent choice can be made for this axis
by infinitesimally detaching the triangular patch away from
the grid node either toward the normal direction of the tri-
angular patch or opposite to it.
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5. Interpolation of the velocity

The staggered arrangement of the velocity components
u, v and w and the pressure p, as illustrated in Fig. 3, neces-
sitates the interpolation of the velocity components at the
MAC grid nodes with subscripts listed in Table 1 from
the defined velocity components uiþ1

2;j;k
; vi;jþ1

2;k
, and wi;j;kþ1

2
.

Define the interpolation operators ei, ej, ek as

eið�Þi;j;k ¼
ð�Þiþ1

2;j;k
þ ð�Þi�1

2;j;k

2
þ cið�Þi;j;k; ð65Þ

ejð�Þi;j;k ¼
ð�Þi;jþ1

2;k
þ ð�Þi;j�1

2;k

2
þ cjð�Þi;j;k; ð66Þ

ekð�Þi;j;k ¼
ð�Þi;j;kþ1

2
þ ð�Þi;j;k�1

2

2
þ ckð�Þi;j;k; ð67Þ

where ci, cj, and ck are jump contributions. If the stencils of
the above interpolation operators do not cross any fluid–
solid interface, the jump contributions are zero, and usual
interpolation schemes are recovered. If the stencils of the
above interpolation operators cross a fluid–solid interface,
the jump contributions are non-zero, and they can be cal-
culated according to Eq. (6). With these interpolation oper-
ators, the interpolation for the first row in Table 1 can be
written as follows in the listing order:

ui;j;k ¼ eiui;j;k; ð68Þ
uiþ1

2;jþ
1
2;k
¼ ejuiþ1

2;jþ
1
2;k
; ð69Þ

uiþ1
2;j;kþ

1
2
¼ ekuiþ1

2;j;kþ
1
2
; ð70Þ
U
N

C

N +

N -

1st

n

L
4th

yz

B

a b

Fig. 11. Interpolation of the velo
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ui;jþ1
2;k
¼ ejui;jþ1

2;k
; ð71Þ

ui;j;kþ1
2
¼ ekui;j;kþ1

2
; ð72Þ

The interpolation for the second and the third rows in Ta-
ble 1 can be written similarly.

A fluid–solid interface moves with the fluid. To update
the interface location, the velocity of Lagrangian markers
at the interface is interpolated from surrounding fluid
velocity. The current method takes the interpolation strat-
egy illustrated in Fig. 11. As shown in Fig. 11a, the velocity
of the Lagrangian marker L on the interface is interpolated
from two supplemental points N+ and N� along the nor-
mal direction n* at the marker, and the two supplemental
points are at the different sides of the interface with the
equal distance Dn* away from the interface. According to
Eq. (6), the interpolation scheme at this step is

vðLÞ ¼ vðNþÞ þ vðN�Þ
2

� 1

2

ovðLÞ
on�

� �
Dn� þ OððDn�Þ2Þ; ð73Þ

where the normal derivative ov
on�


 �
¼ �ReFs according to

Eq. (28). Trilinear interpolation is used to interpolate the
velocity of each supplemental points from surrounding
MAC grid points via transitional points in three separate
steps, as shown in Fig. 11b, where the Cartesian grid points
are the vertices of the cell, the transitional points lie on the
edges and the faces of the cell, and a supplemental point lo-
cates inside the cell. The order of each interpolation step is
marked in Fig. 11b. The distance Dn* is chosen to be a little

larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2 þ ðDzÞ2

q
such that all the inter-

polation cell in Fig. 11b is not cut by any interface. Thus a
standard interpolation scheme can be applied in each inter-
polation step in Fig. 11b. Because of the staggered arrange-
ment of the velocity components, the interpolation cell
shown in Fig. 11b is different for the different velocity com-
ponents. In Fig. 11b, if the cell is for the velocity compo-
nent u, the transitional point II can be interpolated from
the MAC grid points I and III as the following:

uðIIÞ ¼ zðIIIÞ � zðIIIÞ
zðIIIÞ � zðIÞ uðIÞ þ zðIIÞ � zðIÞ

zðIIIÞ � zðIÞ uðIIÞ þ OððDzÞ2Þ:

ð74Þ
N + N -

3rd 2nd

( )

x

II

I

III

city of a Lagrangian marker.
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More transit points and Cartesian grid nodes than in
Fig. 11 can be used to achieve higher order interpolation
as long as no interfaces cut interpolation cells.

There are other options available to interpolate the
velocity of Lagrangian markers from surrounding fluid
velocity. The following two options are avoided in the cur-
rent practice. In the first one, the velocity of a Lagrangian
marker is interpolated from the three closest intersections
using a area-based formula similar to Eq. (59), and the
velocity of the intersections is previously interpolated from
MAC grid nodes both inside and outside of the interface. It
turns out this option only gives first-order accuracy in the
infinity norm for the velocity. In the second option, the
velocity of a Lagrangian marker is extrapolated from
MAC grid nodes either inside or outside of the interface.
Accuracy of high order can be achieved, but the method
suffers from a small numerical stability region with rela-
tively low Reynolds numbers.
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6. Summary of the method

The major procedures of the current method can now
be summarized as follows. The computational cost associ-
ated with each step is also given, with N denoting the
total number of MAC grid nodes for the pressure and
M denoting the total number of Lagrangian markers.
(Since the integers M1 and M2 are chosen such that the
maximum distance between two neighboring Lagrangian
markers is about the spatial step of the background
MAC grid, the total number of intersections between
MAC grid lines and fluid–solid interfaces is of order M

too.)

1. Initializing the flow field and the interfaces
ðOðNÞ þ OðMÞÞ;

2. calculating surface derivatives of geometric quantities
ðOðMÞÞ;

3. modeling singular forces ðOðMÞÞ;
4. calculating surface derivatives of forcing quantities
ðOðMÞÞ;

5. calculating jump conditions ðOðMÞÞ;
6. finding the intersections ðOðMÞÞ;
7. calculating jump contributions to finite difference and

interpolation schemes ðOðMÞÞ;
8. interpolating and smoothing the velocity of the

Lagrangian markers ðOðMÞ þ OðM ln MÞÞ
9. updating the interface configurations ðOðMÞÞ;

10. solving the pressure field ðOðN ln NÞÞ;
11. updating the velocity field ðOðNÞÞ.

7. Numerical examples

In this section, numerical examples simulated by the cur-
rent method are given to test its accuracy, conservation,
and efficiency.
Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
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7.1. Flow inside a rotating object

This first example considers the steady flow inside an
object which rotates with a constant angular velocity X
around a unit vector R. The object is in the middle of a
½�1; 1� � ½�1; 1� � ½�1; 1� cuboid. Rigid-wall boundary
conditions are applied at the six sides of the cuboid. The
analytical solution of the flow inside the rotating object is

vðxÞ ¼ XR� x; ð75Þ

pðxÞ ¼ 1

2
X2kR� xk2

2 þ p0; ð76Þ

where p0 is an arbitrary constant. To enforce the prescribed
rotation, each Lagrangian marker on the object is con-
nected to its prescribed position by a linear spring, and
the density of the singular force from the spring model is
given by the following equation:

F ¼ KsðXe � XÞ; ð77Þ
where Ks is the spring stiffness, and Xe is the prescribed po-
sition of a Lagrangian marker.

7.1.1. Spatial convergence

Spatial convergence of the method is indicated by the
change of simulation errors with grid refinement. The sim-
ulation errors are based on the analytical solution, Eqs.
(75) and (76). Table 2 presents the results of spatial conver-
gence analysis for the steady flow inside a rotating sphere
with the diameter equal to 1 at Re = 10. The angular veloc-
ity of the rotation is X = 1, and the rotation direction is
given by R ¼

ffiffi
3
p

3
;
ffiffi
3
p

3
;
ffiffi
3
p

3

� 	
. The value of the spring stiffness

in the spring model is Ks = 1000. In Table 2, Nx, Ny, and Nz

are the numbers of MAC cells for the pressure p along the
x-, y-, and z-axes, respectively. The order of accuracy is cal-
culated by the following formula:

order ¼ lnðkecurrentk1=kepreviousk1Þ
lnðDcurrent=DpreviousÞ

; ð78Þ

where ecurrent and eprevious denote the errors at the current
and the previous rows in Table 2, respectively, and Dcurrent

and Dprevious denote the corresponding spatial resolutions.
The results in Table 2 indicate that the accuracy for the
three velocity components u, v, and w is near second-order,
and the accuracy for the pressure p is between first and sec-
ond order.

Table 3 are the results for the steady flow inside a rotat-
ing torus with R = 0.5 and r = 0.25 at Re = 10. The angu-
lar velocity of the rotation is X = 1, and the rotation
direction is R ¼ ð1; 0; 0Þ. The value of the spring stiffness
is Ks = 1000. The results in Table 3 also indicate that the
accuracy for the velocity components u, v and w is near sec-
ond-order, and the accuracy for the pressure p is between
first and second order.

7.1.2. Effect of spring stiffness
The effect of spring stiffness is investigated by simulating

the steady flow inside a rotating sphere with different values
sed interface method for fluid–solid interaction, Comput. Meth-
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Table 2
Spatial convergence analysis for the flow inside a rotating sphere

Nx · Ny · Nz, M1 · M2 keuk1 Order kevk1 Order kewk1 Order kepk1 Order

25 · 25 · 25, 24 · 48 3.51 · 10�2 3.45 · 10�2 3.41 · 10�2 2.33 · 10�2

33 · 33 · 33, 32 · 64 2.23 · 10�2 1.63 2.21 · 10�2 1.60 2.19 · 10�2 1.60 1.15 · 10�2 2.45
49 · 49 · 49, 48 · 96 1.12 · 10�2 1.74 1.14 · 10�2 1.67 1.12 · 10�2 1.70 6.83 · 10�3 1.28
65 · 65 · 65, 64 · 128 6.84 · 10�3 1.75 6.88 · 10�3 1.79 7.51 · 10�3 1.41 5.40 · 10�3 0.82
97 · 97 · 97, 96 · 192 3.29 · 10�3 1.83 3.32 · 10�3 1.82 3.29 · 10�3 2.06 2.94 · 10�3 1.52

Table 3
Spatial convergence analysis for the flow inside a rotating torus

Nx · Ny · Nz, M1 · M2 keuk1 Order kevk1 Order kewk1 Order kepk1 Order

25 · 25 · 25, 24 · 48 1.58 · 10�2 1.12 · 10�1 1.15 · 10�1 1.42 · 10�1

33 · 33 · 33, 32 · 64 1.51 · 10�2 0.16 8.17 · 10�2 1.14 8.18 · 10�2 1.23 9.23 · 10�2 1.50
49 · 49 · 49, 48 · 96 8.16 · 10�3 1.56 4.92 · 10�2 1.28 4.81 · 10�2 1.34 5.98 · 10�2 1.07
65 · 65 · 65, 64 · 128 5.30 · 10�3 1.53 2.10 · 10�3 3.01 2.08 · 10�2 2.97 3.56 · 10�2 1.80
97 · 97 · 97, 96 · 192 2.97 · 10�3 1.45 9.85 · 10�3 1.89 9.68 · 10�3 1.91 2.27 · 10�2 1.11
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of spring stiffness. The spatial resolution of the simulation
corresponds to Nx · Ny · Nz = 33 · 33 · 33 and M1 ·
M2 = 32 · 64.

Table 4 lists the change of simulation errors against the
spring stiffness. For this particular flow, the spring stiffness
in the considered range has very small effect on the infinity
norm of the simulation errors for both the velocity and the
pressure. The errors for the positions of Lagrangian mark-
ers are plotted for Ks = 10 and Ks = 5000 in Fig. 12. The
amplitudes of the position errors are much larger for much
smaller spring stiffness, as expected.

The spring model introduces a vibration time scale into
the flow. The effect of this time scale on a time-dependent
flow has been investigated in [33]. How to choose the values
of the spring stiffness has also been discussed in [33].
741
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754

755
U
N

C
O

R
R7.2. Flow induced by a relaxing balloon

In the second example, a 3D pressurized balloon
immersed in an incompressible fluid relaxes to its spherical
equilibrium shape from the initial distortion. The initial
velocity and the pressure are set zero, and the coupled
motion of the balloon and the fluid is driven only by balloon
tension. The simulation domain is a square box with dimen-
sions ½�0:8; 0:8� � ½�0:8; 0:8� � ½�0:8; 0:8�. The initial shape
of the balloon is an ellipsoid with a = 0.64, b = 0.4, and
c = 0.25. The center coordinates of the ellipsoid are
ð0; 0; 0Þ. The density of singular force is modeled by

F ¼ EHn�; ð79Þ
Table 4
Effect of spring stiffness on the simulation accuracy for the flow inside a rotat

Ks 10 100 500

keuk1 2.35 · 10�2 2.25 · 10�2 2.23 · 10�

kevk1 2.35 · 10�2 2.26 · 10�2 2.25 · 10�

kewk1 2.39 · 10�2 2.22 · 10�2 2.20 · 10�

kepk1 1.26 · 10�2 1.61 · 10�2 1.28 · 10�

Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
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E
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P
Rwhere H is the mean curvature of the balloon surface, and

E = 0.2 is a constant. At equilibrium, the balloon should be
a sphere with radius ro ¼

ffiffiffiffiffiffiffi
abc3
p

¼ 0:4 and center coordi-
nates ð0; 0; 0Þ, the velocity should be zero everywhere,
and the pressure should be piecewise constants with a
jump, ½p� ¼ � E

ro
¼ �0:5, across the balloon surface.

Shown in Fig. 13 is the simulated evolution of balloon
shape at Re = 100. The spatial resolution of this simulation
is Nx · Ny · Nz = 33 · 33 · 33 and M1 · M2 = 32 · 64, and
the time step of this simulation is fixed with Dt = 0.01. At
this Reynolds number, the balloon undergoes a couple of
oscillations before it settles down to equilibrium, as indi-
cated in Fig. 14a. In Fig. 14a, the distances ra, rb, and rc

to the domain center ð0; 0; 0Þ from three Lagrangian points
ðm1;m2Þ ¼ M1

2
; 0

� �
; M1

2
; M2

4

� �
, and (0, 0), are plotted against

time at four different spatial simulation resolutions. The
volume conservation of the balloon in the relaxation pro-
cess is checked in Fig. 14b. The volume is well conserved
during the process with its calculated values very close to
the analytical one, 4pabc

3
� 0:2681. The volume errors during

the relaxation process are of the same amplitudes as their
initial values (at the time t = 0) which are due to the
approximation of the volume by a Riemann sum. The rel-
ative volume errors do not exceed 0.37% at the four resolu-
tions. The equilibrium pressure at two slices shown in
Fig. 15 indicates that it is piecewise constants with a jump
across the balloon surface.

The volume conservation is checked in Fig. 16 for
Re = 1. The spatial resolution of this simulation is
Nx · Ny · Nz = 33 · 33 · 33 and M1 · M2 = 32 · 64, and
ing sphere

1000 2000 5000

2 2.23 · 10�2 2.23 · 10�2 2.25 · 10�2

2 2.21 · 10�2 2.60 · 10�2 2.25 · 10�2

2 2.19 · 10�2 2.19 · 10�2 2.19 · 10�2

2 1.15 · 10�2 1.98 · 10�2 1.44 · 10�2
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Fig. 12. Errors for the positions of Lagrangian markers: (a) Ks = 10, (b) Ks = 5000.
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the time step Dt = 0.005 is also fixed. No oscillations are
observed at this low Reynolds number, and it takes a very
long time for the balloon to reach equilibrium.

Fig. 17 plots the distances ra, rb, and rc, and the volume
against time for Re = 10 at different CFL numbers. The
convective and viscous CFL numbers CFLc and CFLl

are defined as

CFLc ¼ Dt
umax

Dx
þ vmax

Dy
þ wmax

Dz

� �
; ð80Þ

CFLl ¼
Dt
Re

1

ðDxÞ2
þ 1

ðDyÞ2
þ 1

ðDzÞ2

 !
; ð81Þ

where umax, vmax, and wmax are the maximum velocity com-
ponents in the flow field. Again, the volume of the balloon
is well preserved in the relaxation process, with the relative
errors less than 0.52% for the four values of the CFL
numbers.
790790

791

792
R
R

7.3. Flow past a stationary sphere

Flow past a stationary sphere at varying Reynolds num-
bers, Re = 10, 20, 100, and 200, is simulated in this exam-
U
N

C
O

Fig. 13. Evolution of the ba
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ple. The spring model given by Eq. (77) is used to calculate
the density of singular force with Ks = 1000, 500, 200, and
100 for Re = 10, 20, 100, and 200, respectively. The sphere
locates in a box domain. Its diameter equals to 1, and its
center coordinates are (0,0,0). The spatial resolution of
the simulation is given by Nx · Ny · Nz = 256 · 129 · 129
and M1 · M2 = 32 · 64. For Re = 10, 20, and 100, the
domain sizes are ½�4; 16� � ½�4; 4� � ½�4; 4� along the x-,
y-, and z-axes, and the fixed time step Dt = 0.005 is used.
For Re = 200, the domain sizes are
½�2; 8� � ½�2; 2� � ½�2; 2�, and the time step is controlled
by CFLc = CFLl = 0.2. A free stream enters the domain
in the direction of the x-axis. At the four sides of the
domain, symmetric boundary conditions are used. At the
domain outlet, the following outflow boundary conditions
are used:

ov

ox
¼ 0; ð82Þ

op
ox
¼ 1

Re
o2u
ox2

: ð83Þ

At Re = 10, 20, and 100, the initial flow field is set uniform
with u = 1 as the far field, and the sphere impulsively stops
lloon shape at Re = 100.
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Fig. 14. Volume conservation at Re = 100 with different spatial resolutions: (a) temporal change of distances from three Lagrangian markers to the
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from the uniform velocity. At Re = 200, the initial flow
field is set quiescent with u = 0, and the following formula
U
N

C
O

R
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Fig. 16. Volume conservation at Re = 1: (a) temporal change of distances from
volume.
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Pis used to ramp the far-field uniform flow from u = 0 to
u = 1 to avoid impulsive stop of the sphere

un ¼ un þ exp � tn�1

tc

� �
� exp � tn

tc

� �
; n

¼ 1; 2; . . . ; ð84Þ

where the subscript n denotes a discrete time level, t0 = 0
corresponds to the initial time, and tc = 1 is a characteristic
time of the ramping process. Correspondingly, the bound-
ary condition for u at the domain inlet is u ¼ 1� exp � tn

tc

� 	
instead of u = 1 at the other Reynolds numbers.

In general, the fluid force G applied by a fluid to an
object can be calculated by

G ¼
Z

S
�pþn� þ 1

Re
ov

on�

� �þ� �
dS

¼ �
Z

S
f da1 da2 þ

Z
S
�p�n� þ 1

Re
ov

on�

� ��� �
dS; ð85Þ
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Fig. 17. Volume conservation at Re = 10 at different CFL numbers: (a) temporal change of distances from three Lagrangian markers to the domain
center, (b) temporal change of volume. lines: CFLc = CFLl = 0.05, lines with ‘‘+’’ marks: CFLc = CFLl = 0.1, lines with ‘‘o’’ marks:
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Fig. 18. Time history of the drag coefficient for flow past a stationary
sphere at different Reynolds numbers.

Table 5
Drag coefficient and wake structure of flow past a sphere

Re 10 20 100 200

C1 Current 4.42 3.73 1.15 0.88
Previous 4.4 3.8 1.2 0.8

Hs, LTB Current – – 130, 0.89 119, 1.44
Previous – – 128, 0.90 116, 1.45

(xTB,zTB) Current – – (0.76, 0.29) (0.90, 0.36)
previous – – (0.76, 0.30) (0.90, 0.36)
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where the subscript ‘‘+’’ denotes the outer side of the object
surface (fluid–solid interface) and the subscript ‘‘�’’ de-
notes the inner side. The term

R
S f da1 da2 is just the resul-

tant external force on the object generated by a force
model (a collection of springs in this example). For a cen-
trally symmetric object, its motion can be regarded as the
superposition of translation and rotation at its geometric
center, and the following relations apply:Z

S
ð�p�n�ÞdS ¼ V

dUt

dt
; ð86ÞZ

S

ov

on�

� ��
dS ¼ 0; ð87Þ

where Ut is the translational velocity of the object, and V is
the object volume. Thus the calculation of the fluid force
can be simplified to

G ¼ �
Z

S
f da1 da2 þ V

dUt

dt
; ð88Þ

which is simply the application of Newton’s second law to
the translational motion of the fluid contained inside the
object. The sphere is stationary in the current example,
so the calculation of the fluid force is given by

G ¼ �
Z

S
f da1 da2: ð89Þ

Fig. 18 shows the time history of the drag coefficient C1 for
flow past the sphere. The force coefficients C1, C2, and C3

are defined as ðC1;C2;C3Þ ¼ C ¼ 2G=Af , where Af ¼ p
4

is
the projected frontal area for the sphere. A constant value
of the drag coefficient is achieved for each of the Reynolds
numbers as the flow becomes steady after the transit. Its
value is compared with previous computational results
[26,11] in Table 5, and the agreement is very good. Due
to the spring model, oscillations in the drag coefficient
are observed in the transit. With the ramping process de-
Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.012
scribed by Eq. (84), the amplitudes of the oscillations are
significantly reduced, as indicated in Fig. 19.

The distributions of the streamwise velocity u along the
x-axis are plotted in Fig. 20. Negative values of u at
Re = 100 and 200 indicate recirculating flow behind the
sphere. No recirculating flow exists at Re = 10 and 20.
Streamline plots in Fig. 21 confirm that recirculating flow
exists at Re = 100 but not at Re = 10.
sed interface method for fluid–solid interaction, Comput. Meth-



E
C

T

O
O

F

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

872872

874874

0 1 2 3 4 5
–100

–80

–60

–40

–20

0

20

40

60

80

100

t

C
1

C
2

C
3

0 5 10 15 20
–1

–0.5

0

0.5

1

1.5

2

2.5

3

t

C
1

C
2

C
3

a b

Fig. 19. Transient behavior of force coefficients for flow past a stationary sphere: (a) Re = 10 with no ramping process, (b) Re = 200 with a ramping
process.
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Fig. 20. The distribution of the streamwise velocity u along the x-axis.
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RThe separation angle Hs, the length of a separation bub-

ble LTB, and the coordinates of a separation bubble center
in the x–z plane (xTB,zTB) are illustrated in Fig. 21b. Their
values from the current simulation are compared with pre-
vious computational results [26,11] in Table 5, and agree
with the previous results very well.

In Fig. 22, the surface pressure ps on the sphere is shown
for Re = 200. The surface pressure is calculated by ps = Fn
U
N

Fig. 21. Streamlines on the top of contours of the y-compone

Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
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P
Rsubject to a constant. It is axisymmetric around the x-axis

with the highest value at the stagnation point at this Rey-
nolds number.
E
D7.4. Flow around a flapper

In this example, flow around a hovering flapper is simu-
lated. The spring model given by Eq. (77) with Ks = 100 is
used to calculate the density of singular force. The flapper
is an ellipsoid with a = 0.4, b = 0.5, and c = 0.2, and its two
poles are located in the middle of flat surfaces. The flapper
is contained in a rigid box of dimensions
½�2; 4� � ½�1; 1� � ½�2; 4�. The simulation resolution is
Nx · Ny · Nz = 129 · 65 · 129 and M1 · M2 = 32 · 64.
The time step is fixed in this simulation, and it is
Dt ¼ 1:96� 10�3 � T f

4000
, where Tf is the flapping period.

The motion of the flapper is formulated as

xc ¼ 1:25ðcosð0:8tÞ þ 1Þ cos
p
3

� 	
; ð90Þ

yc ¼ 0; ð91Þ
zc ¼ 1:25ðcosð0:8tÞ þ 1Þ sin

p
3

� 	
; ð92Þ

h ¼ 3p
4
þ p

4
sinð0:8tÞ 1� exp � t

tc

� �� �
; ð93Þ
nt of vorticity at the x–z plane: (a) Re = 10, (b) Re = 100.
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Fig. 22. Surface pressure distribution at Re = 200 in (a) Cartesian space, (b) parameter space.
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where ðxc; yc; zcÞ are the coordinates of the flapper center, h
is the rotation angle of the flapper with respect to the x-
axis, and tc = 1 is a characteristic time of a ramping process
to avoid the impulsive start of the flapper rotation. The
rotation is around the flapper center, and the rotation
direction is given by R = (0,�1,0). The Reynolds number
of the flow is Re = 196. The flapping period is T f ¼ 2p

0:8
. A
U
N

C
O

R
R

E
C

T

Fig. 23. Snapshots of vortex str
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P
R

O2D flapper with the similar kinematics has been simulated
in [29,33].

Fig. 23 shows four snapshots of vortex structures during
one flapping period. As suggested by Chong et al. [4], vor-
tex structures can be identified by the isosurface of the unit
value of Q, where Q is the second invariant of the rate-of-
deformation tensor $v and can be calculated by
E
D

uctures shed from a flapper.
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Fig. 24. Time history of force coefficients for flow around a flapper.

Table 6
Relative computational cost for different number of spheres

Number of objects 0 1 2 3 4

Relative computational cost 1 1.51 1.94 2.46 2.94

The computational time corresponding to the case with no sphere is
0.202 h.
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Q ¼ � 1
2
rv : rv for incompressible flow. Fig. 23 indicates

that a vortex ring is shed downward in the upstroke of
the flapper.

Fig. 24 shows the time history of the force coefficients
C1, C2, and C3. The force coefficients C1, C2, and C3 are
defined as ðC1;C2;C3Þ ¼ C ¼ 2G=A, where A = pab is the
projected area of flat surfaces. In the current simulation
setup, C1 is the drag coefficient, C3 is the lift coefficient,
and C2 is the side force coefficient. The time average values
of C1, C2, and C3 in the first 5 periods are �0.23, 0.0069,
and 0.53, respectively.
928

929

930

931

932

933

934

935

936

937
R
R

E
C7.5. Flow induced by multiple spinning spheres

In this last example, flow induced by different number of
spinning spheres is simulated to examine the efficiency of
the current method in handling multiple solids. Each
sphere spins around an axis through its center, and the
spinning direction is given by R = (0,1,0). Again, the
model of singular force is given by Eq. (77) with
Ks = 1000. Each sphere is represented by M1 · M2 =
U
N

C
O

Fig. 25. Computational domain for flow involving multiple spinning
spheres.

Please cite this article in press as: S. Xu, Z. Jane Wang, A 3D immer
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.012
R
O

O
F

32 · 64 Lagrangian markers. The simulation domain is
shown in Fig. 25, and it is discretized with
Nx · Ny · Nz = 65 · 33 · 65. Also shown in Fig. 25 is con-
tours of u in the x–z plane for the case with four spheres.

Table 6 lists the relative computational cost spent on
5000 time steps using the same computer for different num-
ber of spheres, and indicates a linear relation with the slope
equal to about 0.5. In this example, the ratio of
Nx · Ny · Nz to M1 · M2 is about 65, which is relatively
small. In the previous example of flow around a flapper,
the ratio is about 4 times larger. If this ratio is larger, the
slope is expected to become smaller, and the method is rel-
atively more efficient in handling multiple moving solids.
938

939
E
D

8. Conclusions

This paper presents the detailed numerical implementa-
tion of a 3D immersed interface method with the jump con-
ditions derived in [32]. The method is tested in simulating
(a) flow inside a rotating object, (b) flow induced by a
relaxing balloon, (c) flow past a stationary sphere, (d) flow
around a flapper, and (d) flow induced by multiple spinning
spheres. The test results suggest that (1) the method has
near second-order accuracy in the infinity norm for veloc-
ity, and the accuracy for pressure is between first and sec-
ond order; (2) the method conserves the volume enclosed
by a no-penetration boundary very well; and (3) the
method can efficiently handle multiple moving solids with
ease. Future work on the method includes the analysis
and improvement of its numerical stability, the use of dif-
ferent interface tracking schemes, and the application of
the method to relatively high Reynolds numbers through
implicit treatment of solid motion and adaptive mesh
refinement.
940

941

942

943

944
Acknowledgements

S. Xu thanks Professor Charles Peskin’s help with his
career development. The authors want to thank Professor
Randall LeVeque and Professor Zhilin Li for helpful dis-
cussions. This work is supported by the AFOSR.
945

946

947

948

949
Appendix. Analytical solutions to the linear systems in

Section 3

The coefficient matrices C1 and C2 in the small linear
systems given by Eqs. (28), (30), (33), and (37) are formed
from three independent vectors, s, b, and n. They are non-
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U
N

C
O

R
R

E
C

singular (except at the two poles of a spherical interface).
The inverse of C1 is

C�1
1 ¼

1

J 2

t1 b1 n1

t2 b2 n2

t3 b3 n3

0
B@

1
CA; ð94Þ

where ðt1; t2; t3Þ :¼ t ¼ b� n, and (b1,b2,b3) :¼ b = n · s.
The linear systems with the form of C2q = r can be

expanded, split, and rewritten as below

C1 0 0

0 C1 0

0 0 1

0
B@

1
CA

s1 s2 s3 0 0 0

0 s1 0 s2 s3 0

0 0 s1 0 s2 s3

b1 b2 b3 0 0 0

0 b1 0 b2 b3 0

0 0 b1 0 b2 b3

1 0 0 1 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

q1

q2

q3

q4

q5

q6

0
BBBBBBBB@

1
CCCCCCCCA

¼

r1

r3

r4

r3

r2

r5

r6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
)

s1 s2 s3 0 0 0

0 s1 0 s2 s3 0

0 0 s1 0 s2 s3

b1 b2 b3 0 0 0

0 b1 0 b2 b3 0

0 0 b1 0 b2 b3

1 0 0 1 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

q1

q2

q3

q4

q5

q6

0
BBBBBBBB@

1
CCCCCCCCA

¼
C�1

1 0 0

0 C�1
1 0

0 0 1

0
B@

1
CA

r1

r3

r4

r3

r2

r5

r6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:¼ ðd1; d2; d3; d4; d5; d6; d7ÞT;

ð95Þ

where q ¼ ðq1; q2; q3; q4; q5; q6Þ
T and

r ¼ ðr1; r2; r3; r4; r5; r6ÞT.
As s is non-zero, at least one component of s is non-

zero. If s1 5 0, then

1 0 0 1 0 1

s1 s2 s3 0 0 0

b1 b2 b3 0 0 0

0 s1 0 s2 s3 0

0 b1 0 b2 b3 0

0 0 s1 0 s2 s3

0 0 b1 0 b2 b3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

q1

q2

q3

q4

q5

q6

0
BBBBBBBB@

1
CCCCCCCCA
¼

d7

d1

d4

d2

d5

d3

d6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð96Þ

If s2 5 0, then
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1 0 0 1 0 1

s2 s3 s1 0 0 0

b2 b3 b1 0 0 0

0 s2 0 s3 s1 0

0 b2 0 b3 b1 0

0 0 s2 0 s3 s1

0 0 b2 0 b3 b1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

q4

q5

q2

q6

q3

q1

0
BBBBBBBB@

1
CCCCCCCCA
¼

d7

d2

d5

d3

d6

d1

d4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð97Þ

If s3 5 0, then

1 0 0 1 0 1

s3 s2 s1 0 0 0

b3 b2 b1 0 0 0

0 s3 0 s2 s1 0

0 b3 0 b2 b1 0

0 0 s3 0 s2 s1

0 0 b3 0 b2 b1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

q6

q5

q3

q4

q2

q1

0
BBBBBBBB@

1
CCCCCCCCA
¼

d7

d3

d6

d2

d5

d1

d4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð98Þ

Eqs. (96)–(98) can be denoted with the following form:

1 0 0 1 0 1

a b c 0 0 0

x y z 0 0 0

0 a 0 b c 0

0 x 0 y z 0

0 0 a 0 b c

0 0 x 0 y z

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

v1

v2

v3

v4

v5

v6

0
BBBBBBBB@

1
CCCCCCCCA
¼

R1

R2

R3

R4

R5

R6

R7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð99Þ

where a 5 0. With Gaussian elimination, the coefficient
matrix in Eq. (99) can be transformed to

1 0 0 1 0 1

0 a 0 b c 0

0 0 a 0 b c

0 0 0 �s3 �2bc �s2

0 0 0 0 e f

0 0 0 0 g h

0 0 0 0 m3 �m2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð100Þ

where

s2 ¼ a2 þ c2 > 0;

s3 ¼ a2 þ b2 > 0;

m2 ¼ cx� az;

m3 ¼ ay � bx;

e ¼ 2bcðaxþ byÞ � s3ðcy þ bzÞ;
f ¼ s2ðaxþ byÞ � s3ðaxþ czÞ;
g ¼ �s3m2 � 2bcm3;

h ¼ �s2m3:

Since a and n are non-zero except at the poles of an ellip-
soidal interface, one of m2 and m3 must be non-zero [32].
The right lower corner matrix in (100) can be transformed
to
sed interface method for fluid–solid interaction, Comput. Meth-
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0 m3f þ m2e

0 m3hþ m2g

m3 �m2

0
B@

1
CA; ð101Þ

if m3 5 0, or

m3f þ m2e 0

m3hþ m2g 0

m3 �m2

0
B@

1
CA; ð102Þ

if m2 5 0. It can be shown that m3h + m2g < 0 [32]. So far,
Eq. (95) has been solved analytically.
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