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Two Dimensional Mechanism for Insect Hovering
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Resolved computation of two dimensional insect hovering shows for the first time that a two dimen-
sional hovering motion can generate enough lift to support a typical insect weight. The computation
reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices,
which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the
role of the phase relation between the wing translation and rotation in lift generation and explains why
the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower
limits in Reynolds number and amplitude above which the averaged forces are sufficient.

PACS numbers: 87.19.St, 47.11.+ j, 47.32.Cc

A central question in hovering insect flight is how does
an insect generate enough lift to keep it aloft. Early qua-
sisteady analysis failed to predict sufficient force required
for hovering, hence the myth “bumblebees cannot fly ac-
cording to conventional aerodynamics.” This led to the
recognition that unsteady effects must be important [1,2].
On the surface, the myth about insect flight is a nuisance
leftover from history. No one doubts that insects can fly,
nor does one doubt that flow around an insect wing obeys
the Navier-Stokes equation. However because the resolu-
tion of the myth hinges on our understanding of unsteady
flows interacting with dynamic boundaries, a notoriously
difficult problem in fluid dynamics, the myth has not been
put to rest after more than 50 years. The difficulties in-
clude quantifying unsteady effects and identifying a mini-
mal model which contains the essence of hovering flight.

Recently, several elegant experiments of robotic in-
sect wings made significant advances in quantifying
some of the unsteady effects. In particular, Ellington
et al. observed a coherent three dimensional leading-edge
vortex that could enhance the lift, and they argued that
three dimensional effects were important for hovering
[3]. Dickinson et al. measured the unsteady forces on a
robotic fruit fly wing and demonstrated the role of wing
rotation in force generation [4].

Unlike fixed-wing airplanes, insects fly in a sea of vor-
tices created by their flapping wings. Insects depend on
vortices to keep them aloft, especially when they are hov-
ering. Therefore, an important key for solving the mystery
of insect flight is the understanding of the vortex shed-
ding due to a rapidly oscillating wing at the intermedi-
ate Reynolds numbers, for which no simple theory exists.
Although there were many visualization studies of streak
lines around an insect wing, the spatial and temporal reso-
lutions were typically inadequate to quantify the vortex dy-
namics. Theoretically, to quantify flow separation requires
solving the Navier-Stokes equation coupled to a dynamic
boundary. Part of our challenge is to resolve the highly
unsteady vortices shed from thin tips. Previously, a hand-
ful of computations aimed to capture qualitative features

of vortex dynamics that were comparable to experiments
[5,6]. However, in order to probe the detailed vortex dy-
namics and predict the forces, improved computation is
required. To this end, we developed a high order numeri-
cal tool to solve the Navier-Stokes equation around a two
dimensional moving wing, which mimics insect flight [7].

Real insect flight, like real airplane flight, is naturally
three dimensional. While it is well understood that, to the
leading order, lift on an airplane wing can be explained by
a two dimensional wing theory, surprisingly little has been
explored to determine whether there is a fundamental two
dimensional mechanism for insect hovering flight.

FIG. 1. The positions of a wing element in one period as mod-
eled here. The downstroke phase is indicated by the solid el-
lipses and the upstroke by the dashed ellipses. The center of the

wing is governed by A�t� �

A0

2 �cos�2pt�T � 1 1�, and the angle
of attack a�t� � p�4 2 p�4 sin�2pt�T 1 f�, where f is the
phase difference. The stroke plane is inclined at an angle b. In
this study, we pick parameters based on dragonfly data, A0 �

2.5 cm, T � 0.025 s, b � p�3, and the chord c � 1 cm [9].
The air density and viscosity are rair � 1.225 3 1023 g�cm3,
and n � 0.15 cm2�s, respectively.
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The goal of this work is to quantify the vortex dynamics
that is essential for hovering and identify a minimal two
dimensional model that produces sufficient lift.

The majority of insects, including dragonflies, hawk-
moths, and fruit flies, employ a superposition of heaving
and pitching motion to hover, sometimes referred to as a
“figure-eight” motion [8]. Figure 1 illustrates a generic
sinusoidal motion of an elliptic wing cross-section in the
chord direction.

To simulate flow around a hovering wing, we solve
the Navier-Stokes equation in elliptic coordinates, �m, u�,
whose mesh points are naturally clustered around the tips
and the body of the ellipse to resolve the boundary layer.
The two dimensional Navier-Stokes equation for vorticity
has the following form in �m, u�:

FIG. 2 (color). Snapshots of the vorticity field illustrate the
formation and dynamics of a dipole jet during hovering. During
the downstroke, as shown in (a) and (b), a pair of counterrotating
vortices is generated by the translational motion, and during the
upstroke, as shown in (c) and (d), the rotation fuses the leading
and trailing edge vortices to form a comoving dipole pair. The
dipole and wing then separate in the upstroke phase. At the
end of the upstroke, shown in (d), the wing is sufficiently far
away from the strong vortices generated in the previous cycle
and is ready to repeat the whole process without interfering
with the previous vortices. The left vortex rotates clockwise and
the right vortex rotates counterclockwise. The parameters are
A � 2.5 cm, T � 0.025 s, b � p�3, f � 0, n � 2.0 cm2�s;
thus Re � 157.

≠�Sv�

≠t
1 �

p

S u ? =�v � nDv , (1)

= ? �
p

S u� � 0 , (2)

where u is the velocity field, v is the vorticity field, and
S is the scaling factor S�m, u� � cosh2m 2 cos2u.

The equation is solved by an explicit fourth-order com-
pact finite difference scheme [7,10]. An advantage of the
scheme is that at each time step, only two Poisson solvers
are required to achieve a fourth-order spatial accuracy. In
addition, the vorticity boundary condition is explicitly en-
forced. The code was tested against experiments of flow
past a cylinder by comparing the velocity field, the sepa-
ration angle of the shed vortex, and the lift forces [7]. The
numerical convergence study shows the accuracy of the
code to be fourth order [7]. The time step is chosen such
that the change in vorticity is less than 1026 when the time
step is reduced to half.

The figure-eight motion turns out to solve two prob-
lems simultaneously: to create a dipole and to get rid of
it. Figure 2 shows the snapshots of the computed vorticity
field near the wing during one period. The wing transla-
tion creates a pair of leading and trailing edge vortices of
opposite rotation. The wing rotation then combines them
into a dipole. Because each vortex induces a flow on the
other one, they form a comoving pair. If the timing is cor-
rect, such as in this case, where f � 0, the dipole moves
downward carrying momentum with it to generate a lift on
the wing. The self-induced flow sweeps away the vortices
from the wing, so they do not interfere with the vortices in
the next cycle. The shedding frequency in this case is the
same as the flapping frequency.

The above mechanism immediately suggests that three
dimensionality is not essential for hovering. Previously
it was assumed the dipole vortices were formed from the
shedding of tip vortices [11,12]—a three dimensional ef-
fect. But apparently the figure-eight motion alone can gen-
erate a downward flow.

Despite the differences, we observe similarities between
the dynamics of vortices in two and three dimensions. In
particular, the dominant leading-edge vortex is attached to
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FIG. 3. Time dependent lift and drag per unit span. The time
is normalized by its period, 0.025 s.
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FIG. 4. The lift coefficient (CL), defined as the lift normalized
by 0.5raircU

2
max, as a function of normalized amplitude, where

Umax is the peak value of the translational velocity and c is the
chord length.

the wing during the downward phase, which is consistent
with experiments [3]. The “dynamic stall” is present in two
dimensional hovering partly because the vortex separation
time scale is larger than half of the flapping period and
partly because the wing rotates.

To quantify the lift and compare it with the weight of a
typical insect, we plot the instantaneous forces in Fig. 3.
Because ultimately we are interested in the average forces,
lift and drag are defined in the vertical �Y � and horizontal
�X� direction.

The instantaneous forces reach a nearly periodic state
after only a few strokes. It is not a priori that an arbi-
trary periodic wing motion coupled to fluid will immedi-
ately generate a periodic force because of the complicated
interaction with fluids. In our case, the forces quickly
reach an almost periodic state because of negligible inter-
ference from vortices generated in previous cycles as seen
in Fig. 2, which happens only when rotation and transla-
tion are phased correctly. The quick transient to a periodic
state in principle enables an insect to take off in a few
strokes.

The double peaks in up- and downstrokes resemble
typical experimental measurements [4,13]. The averaged
two dimensional lift and thrust per unit span over 50 pe-
riods are 2.8 3 1022 and 5.2 3 1023 N�m, respectively.
Repeated computation with twice the spatial resolution
gives the same answer in the significant digits.

Based on these values, we estimate the forces on a three
dimensional wing using a standard elliptical loading along
the wing span [14]. For a wing 5 cm long and 1 cm wide
at midspan, we find the total lift supported by one wing
is 1.1 3 1023 N. It follows that two pairs of wings can
support 4.4 3 1023 N, which is more than the weight of
a typical dragonfly ranging between 1 3 1023 to 2.5 3
1023 N [9]. Three dimensional effects could reduce these
computed forces, and the exact factor will be determined
in future computation.

To show that these results are not fortuitous, we vary
separately the phase, the viscosity, and the amplitude, to
study their effects on the forces. Figure 2 suggests that
the coupling between translation and rotation is crucial
in controlling the formation of the dipole and hence the

TABLE I. Dependence of lift on viscosity n for the case of
A � 2.5 cm.

Re n �cm�s2� Lift per unit span �1022 N�m�

15.7 2.0 1.1
157 0.2 2.8
314 0.1 2.6
628 0.05 2.6

1256 0.025 2.6

lift. To verify this, we repeat the calculation that pro-
duced Fig. 2 assuming f � p�5 instead of f � 0. The
average lift and drag are then 21.6 3 1023 and 1.4 3
1023 N�m, respectively, which are an order of magnitude
smaller than the previous case. Also the “lift” is down-
ward. The sensitivity to f was also reported in the previous
experiments [4].

We assume f � 0 in the remaining studies. Table I
shows the average lift and drag for different viscosities.
The average force is insensitive to viscosity at sufficiently
small viscosities, when Re . 157 in our case, because the
lift is dominated by the dynamic pressure rather than by
viscous force. These numbers also suggest a low cutoff
in Reynolds number, Re � 15, when the dragonfly can no
longer support its weight by pitching and heaving motion.

Finally lift increases with amplitude almost quadrati-
cally as shown by the plateau at a value close to 1 in the
lift coefficient plotted in Table I. Again using the typical
weight of a dragonfly as a reference point, we predict that
the lift is sufficient when A0 . 1.5 cm.

In the light of these findings, we suggest that the two
dimensional mechanism for creating a dipole jet discussed
here is the leading order mechanism of lift generation in
hovering flight employing figure-eight strokes. We expect
that in three dimensions, a two dimensional slice in the
chord direction has a qualitatively similar structure as that
depicted in Fig. 2. Although our model neglects many
details, the fact that sufficient lift can be generated from a
generic hovering motion suggests that additional effects for
lift enhancement are refinements rather than necessities.
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