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I. INTRODUCTION

Computation of exterior fluid problems often involves solving the Poisson equation in
an unbounded domain. To cut down computational cost, it is desirable to minimize the
computational domain. Therefore an important numerical issue is how to specify correctly
the boundary condition at a finite computational boundary. In this note, we present an
efficient method for such a task.

The basic idea behind the current work and many previous works (see, for example,
[1–4]) exploits solutions to the Laplace equation outside the compact support of the source.
Therefore, in theory, all these methods are equivalent. However, the current numerical
implementation is simpler than that of previous methods. In particular, we solve the Poisson
equation with a false Dirichlet boundary condition, from which the correct solution can be
obtained. This avoids handling mixed boundary conditions in the far field such as those used
by Keller and Givolli [1]. Moreover, our strategy is independent of the discretization scheme;
thus the derivation is more transparent than derivations employing explicit differencing
schemes, as in the work of Anderson and Reider [3]. Because our method is independent
of the discretization scheme, it can be implemented straightforwardly using a variety of
discretization schemes, including finite difference and finite element methods. The current
method can also be more efficient in high-order schemes than other methods involving
inverting matrices whose complexity depends on the order of finite differencing [4]. Finally,
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it does not require the explicit form of the correct far field boundary condition; thus we
sidestep the Gaussian elimination procedure in the method of Anderson and Reider [3].

II. METHOD

We will restrict our attention to the two dimensional Poisson equation whose source
has a compact support, and will derive the general scheme for a Poisson problem outside
a cylinder. We remark that the same scheme applies, after a transformation, to all other
conformal geometries such as an ellipse or a Joukowski airfoil.

Let R1 be the radius of the cylinder,R2 the radius of the computational boundary, anda
the radius of the compact support of the source term; they satisfy the relationR1 < a < R2.
We need to numerically solve the Poisson equation,

19(r, θ) = ω(r, θ), (1)

with known boundary condition atR1. In theory, the exact solution can be obtained by
convolving the source term with the Green function of the exterior problem. However,
straightforward numerical integrations are expensive unless one resorts to special methods
such as the fast multipole methods [5]. Alternatively and more conventionally, one solves
Eq. (1) in an annulus betweenR1 andR2 by methods using Fast Fourier Transforms (FFT).
This then requires the specification of the boundary condition at the computational boundary
R2, in addition to the physical boundary condition atR1. In our approach we circumvent
the problem by first solving the Poisson equation with a false boundary condition atR2,
and then extracting the correct solution from it.

Let 9̃(r, θ) be the false solution, which satisfies Eq. (1) with boundary conditions

9̃(R1) = 9(R1), (2)

9̃(R2) = 0 ln(R2), (3)

where0 is the total circulation. Our aim is to obtain9(r, θ) from 9̃(r, θ) by subtracting
the error91(r, θ), which satisfies the Laplace equation,191(r, θ) = 0, and has a formal
solution,

91(r, θ) = 01 ln r +
∑
n≥1

(
Bnr n + Cn

r n

)
einθ , R1 < r < R2, (4)

where the unknown constants01, Bn, andCn can be determined from the boundary condi-
tions, Eqs. (2), (3), together with the radial derivative of9̃(r, θ) at R2, which is harmonic.
This follows from the fact that9 outside the compact support is harmonic and has a solution

9(r, θ) = 0 ln r +
∑
n≥1

An
einθ

r n
for r > a. (5)

Using Eqs. (4) and (5), we obtain

∂9̃

∂r
(r, θ) =

∑
n≥1

nBnr n−1einθ −
∑
n≥1

n(An + Cn)

r n+1
einθ + 0 + 01

r
, for r > a. (6)
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The left-hand side is known and we denote its Fourier coefficients asfn,

∂9̃

∂r
(r, θ) ≡ f0+

∑
n≥1

fn(r )e
inθ . (7)

Using Eqs. (2), (3), (6) we can expressAn, Bn, andCn in terms of fn,

01 = 0, (8)

An =
(
R2n

1 − R2n
2

)
Bn, (9)

Bn = fn

2nRn−1
2

, (10)

Cn = −Bn R2n
1 . (11)

Consequently, the correct solution9(r, θ) is given by

9(r, θ) = 9̃(r, θ)−
∑
n≥1

fn(R2)

2nRn−1
2

(
r n − R2n

1

r n

)
einθ . (12)

fn(R2) and the sum in the last equation can be evaluated via FFT.

III. NUMERICAL IMPLEMENTATIONS AND RESULTS

In this section we illustrate the method by considering a simple example,

19 = r (1+ r ) cosθ + (3+ r ) sin 2θ

r 3
e−r , (13)

which has the exact solution

9e = 1+ e−r

r
cosθ + 1+ e−r

r 2
sin 2θ. (14)

Note that the source term in Eq. (13) decays exponentially inr ; thus the potential solution
gives a good approximation in the far field.

To take advantage of FFT in solving Eq. (13), it is convenient to transform the cylindrical
coordinates to a uniform grid by defining a new variableµ = ln(r ). In the new coordinates
(µ, θ), we have

∂29(µ, θ)

∂2µ
+ ∂

29(µ, θ)

∂2θ
= e2µω(µ, θ), θ ∈ [0, 2π ], µ ∈ [µ1, µ2], (15)

whereω(µ, θ) corresponds to the right-hand side of Eq. (13). Following the procedure
described in the previous section, we first solve9̃ using a false boundary condition atµ2

in addition to the known boundary condition atµ1; 9̃|µ1 = 9e(µ1, θ) and9̃|µ2 = 0. The
solution is then corrected by Eq. (12), withr a function ofµ.

In this example, the computational domain is specified by parametersµ1 = 2 andµ2 = 3.
In Figs. 1a and 1c, we plot the solutions at a given radius along the azimuthal direction. We
compare the exact solution, the solution with a false boundary condition, and the corrected
solution near the far field boundary,r = R2 − dr , and in the middle of the computational
domain,r = R2/2.

Since the corrected solution satisfies the far field boundary condition exactly in theory, the
numerical accuracy is only limited by the discretization scheme. In this example, because



FIG. 1. (a) Comparison among the exact solution,9e, the numerical solution with the false boundary condi-
tion, 9̃, and the corrected solution,9, as a function of the azimuthal angle, which is labeled by the discrete index
j . r = R2 − 2dr , and the grid size is 32× 32. (b) Convergence test using three different resolutions: 32× 32,
64× 64, and 128× 128. The vertical variable corresponds to(9 − 9e)/dr2. Figures 1c and 1d are the same as
Figs. 1a and 1b, respectively, except thatr = R2/2.

FIG. 2. Comparison of the normalized errors shown in Fig. 1d (circles) and those due to pure discretization
(line). The latter is obtained by numerically solving the Poisson equation with the exact analytic boundary condition
specified by Eq. (14).
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we use center differencing at the boundary points, the numerical accuracy is of second
order. This is checked by comparing the solutions using three different grid sizes: 32× 32,
64×64, and 128×128. In Figs. 1b and 1d, we show the convergence of the errors normalized
by dr2. We can further show that the spatial variation of these errors arises mostly from
the discretization procedure. To illustrate this, we compute the numerical solution with
the exact boundary condition given by the analytic expression in Eq. (14). The numerical
errors in this case are only due to discretization and round-off errors. Next we compare
these errors with those shown previously in Fig. 1d. The difference is rather small, as can
be seen in Fig. 2. The small difference can be attributed to the source term excluded from
the computational domain, and the errors introduced by the procedure for correcting the
solution are insignificant. Finally, the requirement of the compact support of the source term
may not be satisfied exactly in practice. Nonetheless, one can estimate this type of errors
using the multipole moments of the excluded source. These estimates then determine an
appropriate size of the computational domain for a target accuracy.

IV. CONCLUSION

In conclusion, the correct solution to the Poisson equation in an unbounded domain
can be obtained without specifying explicitly the correct far field boundary condition.
A false solution with a Dirichlet boundary condition is “self-correctable,” because the
error everywhere in the domain is completely determined by the behavior of the false
solution at far field, whose form is known analytically. Computationally, the correction
is straightforward with essentially an additional FFT. Although our example employs a
finite differencing scheme, our general method can be readily implemented using other
discretization schemes. The current scheme should be useful in the computation of fluid
problems such as flow past a cylinder or other conformal geometry, where the Poisson
solver is usually the workhorse. Finally, the “self-correction” strategy explored here should
be applicable to Poisson equations in high dimensions as well as other linear equations
such as the Helmholtz equation, where the harmonic series are replaced by appropriate
eigenfunctions.
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