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Diffusion in a Random Velocity Field: Spectral Properties of a
Non-Hermitian Fokker-Planck Operator
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We study spectral properties of the Fokker-Planck operator that describes particles diffusing in a
quenched random velocity field. This random operator is non-Hermitian and has eigenvalues occupying
a finite area in the complex plane. We calculate the eigenvalue density and averaged one-particle
Green’s function, compare our results with numerical simulations, and relate them to the time evolution
of particle density. For strong disorder and short times, we find a novel time dependence of the mean-
square displacement: kr2l , t2yd in dimension d . 2. [S0031-9007(97)04078-7]

PACS numbers: 05.40.+ j, 05.45.+b, 05.60.+w, 46.10.+z

In contrast to closed quantum systems, classical systems
often have dynamics generated by non-Hermitian opera-
tors. In this paper we develop general techniques to study
the spectral properties of random non-Hermitian operators,
and apply them to the Fokker-Planck (FP) operator that de-
scribes diffusion and advection of classical particles in a
spatially random but time-independent velocity field:

≠tn ­ LFPn ; D=2n 2 = ? sVnd , (1)

where n is the concentration of particles, D the molecu-
lar diffusivity, and V the background velocity field.
The non-Hermitian character, in this case, is due to the
advection term.
The statistical behavior of the scalar field n obeying

this FP equation has been investigated over a long
history [1–4], in the context of turbulent diffusion and
anomalous diffusion in random media. However, for
general velocity distributions, little appears to be known
about spectral properties of the FP operator, such as
the density of eigenvalues (DOS). An exception is the
special case of potential flow, with V ­ =f. In this
instance, there is a similarity transformation which maps
the FP equation exactly to a Schrödinger equation in
imaginary time [5]. The eigenvalues of the FP operator
with potential flow are therefore real and negative. In
one dimension, it is possible to express any velocity
field in terms of a potential and to transform the FP
equation in this way. Moreover, anomalous diffusion
in one-dimensional systems with random flow has been
shown to be connected with logarithmic singularities of
the DOS and of the eigenstate localization length as the
eigenvalue approaches zero [6]. In two dimensions, in
the opposite case of incompressible flow s= ? V ­ 0d, for
which there is no similarity transformation to a Hermitian
operator, spatial decay of the Green’s function of the FP
operator has been studied numerically [7]. In addition,
a connection between the classical FP equation and the
quantum random flux problem has been analyzed [7].
In general, the eigenvalues of a non-Hermitian FP op-

erator occupy a finite area in the complex plane, rather

than being restricted to the real axis. This fact, despite
the similarities in other respects between the FP and the
Schrödinger equations, renders inapplicable [8] the stan-
dard perturbation expansion of Green’s functions, used for
disordered quantum problems. Furthermore, saddle-point
techniques [8,9] developed for non-Hermitian random ma-
trix ensembles [10,11] are too specialized to be appropri-
ate for random FP operators.
Very recently there has been considerable interest
in properties of random non-Hermitian operators [12–
16], with a range of motivations, including the study
of open quantum systems [9] and the motion of flux
lines in superconductors [12]. Against this background,
a better understanding of their spectral properties and of
calculational methods is clearly desirable.
In this paper we describe a general scheme, based on a
diagrammatic expansion, to compute the disorder-averaged
Green’s functions and the DOS of random non-Hermitian
operators. Similar ideas have been proposed in the context
of random matrix theory by Janik et al. [14], and by
Feinberg and Zee [16]. We apply the technique to the FP
operator of Eq. (1), calculating the shape of the support
of the DOS, and the eigenvalue density itself. We also
compare our analytical results with numerical calculations.
The particular FP operator we consider has constant
diffusivity D and a quenched random velocity field Vsxd.
Note that this is the opposite limit to that in the model
discussed by Kraichnan [4], which has infinitely short time
correlation in velocities. Time-independent flows can be
established in physical systems such as porous media [3].
We take the velocity field to be Gaussian distributed,
with zero mean, and variance

kVaskdVbsk0dl ­ G1

µ

dab 2
kakb

k2

∂

dsk 1 k0d

1 G2

µ
kakb

k2

∂

dsk 1 k0d , (2)

where Vskd ­ s2pd2d
R

ddxe2ik?xVsxd, angular brack-
ets denote the ensemble average, and G1 and G2 represent
the strengths of the transverse and longitudinal parts of
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the velocity field. We take the spectrum of velocity fluc-
tuations to have a short-wavelength cutoff L and consider
a system of volume V. The special case of mixed flow,
G1 ­ G2 ­ G, leads to substantial simplifications: For
clarity of presentation, we describe calculations only in
this limit, but state the results for the general problem.
At a complex frequency v, the dimensionless combina-

tion gsvd ­ sGyjvj2d sjvjyDddy211 is a measure of the
disorder strength. The fact that, as v ! 0, gsvd ! 0 for
d . 2 and gsvd ! ` for d , 2 identify d ­ 2 as the
upper critical dimension [3].
Our aim is to study spectral properties of the FP

operator, LFP . We do so via the ensemble-averaged
Green’s function

gsvd ­

ø
1

v 2 LFP

¿

. (3)

Let kLlj and jRll be the left and right eigenvectors of
LFP with eigenvalue l, and let jpl denote a plane-wave
basis state with wave vector p. The ensemble-averaged
spectral density

Csp, vd ­

*
X

l

kpjRll kLljpldsv 2 ld

+

(4)

is diagonal in this basis, because averaging restores
translational invariance. From it we can obtain the time
Green’s function, or particle density, knsr, tdl, evolving
according to Eq. (1) with the initial condition nsr, t ­

0d ­ dsrd:

knsr, tdl ­ s2pd2d
Z

ddpeip?r
Z

d2vevtCsp, vd .

(5)

In the same basis, the diagonal elements of gsvd, which
we compute, are related to Csp, vd by

gpsvd ­

Z

d2l
Csp, ld
v 2 l

. (6)

Analytic properties of the Green’s function depend on
the eigenvalue density, rsld, in the complex l plane. In
particular,

rsvd ­

1

p

≠

≠vp

1

V
Trgsvd . (7)

Thus, in the complex v plane, gsvd is nonanalytic ev-
erywhere that the eigenvalue density is nonzero. Standard
techniques for calculating disorder-averaged Green’s func-
tions via perturbation theory yield only the part of gsvd
that is analytic in v, together with its analytic continu-
ation inside the support of rsvd [8]. In the special case
of pure potential flow, sG1 ­ 0d, the eigenvalues of LFP

all lie on the negative real axis and gsvd is analytic else-
where. Under these circumstances one can compute, for
example, rsvd in the usual way, from the discontinuity in
gsvd across the real axis. In contrast, for mixed flow (as
we shall show), the eigenvalues of LFP fill a finite area in

the complex plane, the analytic part of gsvd contains lim-
ited information, and a new approach is required.
To this end, for a general L , we construct a matrixH
which (i) has twice the dimension of L , (ii) is Hermitian,
and (iii) has an inverse that contains gsvd as one of four
blocks. Specifically, with A ; v 2 L ,

H ­

µ

e A
Ay 21

∂

. (8)

The inverse, G ; H 21, exists for real e . 0 and is

G ;

√

G11 G12

G21 G22

!

­

√

se 1 AAyd21 Ase 1 AyAd21

Ayse 1 AAyd21 2ese 1 AyAd21

!

. (9)

Since H is Hermitian, G can be calculated using
established methods, and from it we can obtain

gsvd ­ lim
e!0

kG21l . (10)

This approach parallels recent work by Janik et al. [14]
and by Feinberg and Zee [16], and is somewhat dif-
ferent from that taken in other calculations on spectral
properties of non-Hermitian operators: in the present nota-
tion, Sommers and collaborators [8,13] focus on detsG11d,
while Efetov [15] separates L into Hermitian and anti-
Hermitian parts.
A diagrammatic expansion for kGl, and hence gsvd,
follows from writing

H ­ H0 1 H1 , (11)

where

H0 ­

µ

e 0

0 21

∂

and H1 ­

µ

0 A
Ay 0

∂

. (12)

The series for G, in powers ofH1 and of Gs0d ; H 21
0 ,

involves two propagators, G
s0d
11 and G

s0d
22 , and two vertices,

A and Ay. As usual, it is convenient to introduce a self-
energy, S, and proceed via the Dyson equation,

kGl ­ G0 1 G0SkGl , (13)

where

G0 ­

µ

1ye 0

0 21

∂

. (14)

To illustrate the approach, we consider first the asym-
metric Gaussian random matrix ensemble of Ref. [8]:
The N 3 N real matrix fJg has the distribution PfJg ~
exph2N TrsJJT 2 tJJdyf2s1 2 t2dgj so that nonzero co-
variances are kJT

ikJkil ­ 1yN and kJikJkil ­ tyN . The
fully asymmetric problem, in which t ­ 1 and Jik and Jki

are statistically independent, was first studied by Ginibre
[10], and has been treated using a Green’s function method
in Refs. [14] and [16].
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Setting L ­ J, the leading contribution to the self-
energy at large N comes from the diagrams of the self-
consistent Born approximation (SCBA), shown in Fig. 1.
From these we obtain

S ­

√

kG22l tkG21l 2 v
tkG12l 2 vp kG11l

!

. (15)

Solving Eq. (13), we recover the results of Ref. [8]. In
particular, inside the support of the rsvd, defined by
fxys1 1 tdg2 1 f yys1 2 tdg2 , 1, we find

N21Trgsvd ­

µ
x

1 1 t
2

iy
1 2 t

∂

, v ­ x 1 iy ,

(16)

and hence a constant DOS, rsvd ­ fps1 2 t2dg21.
With this preparation, we return to the Fokker-Planck

operator of Eqs. (1) and (2), taking G1 ­ G2 ; G. We
find, at weak disorder and for dimension d . 2, that the
self-energy is again given by the SCBA. Corrections
are small by a factor of the dimensionless disorder
strength gsxd; neglecting these, we obtain the self-energy
(diagonal in wave vector p)

Sp ­

√

p2G
R

ddqkGq
22l 2vp

2vp

p G
R

ddqq2kGq
11l

!

, (17)

where vp ­ v 1 Dp2.
Before discussing the self-consistent solution to

Eqs. (13) and (17), we note that one can arrive at the
same point by expressing G in terms of a functional
integral, averaging using replicas, and making a simple
decoupling approximation. In view of the 2 3 2 block
structure of G, it is natural to introduce two complex
fields, h1 and h2, with hy

­ shy
1 , h

y
2 d, and write for

j, k ­ 1 or 2

Gjk ­ i

ø

Z21
Z

D fhghp

j hke2iS

¿

, (18)

where the normalization and action are

FIG. 1. Self-energy diagrams in the SCBA. Single and
double lines denote the two components of the bare G0: 1ye
and 21, respectively, while the internal propagators represent
the four full Green’s functions.

Z ­

Z

D fhge2iS and S ­ hyH h . (19)

The average over the velocity field, denoted by k· · ·l gen-
erates terms in the action of the form h

y
1,ah1,bh

y
2,bh2,a ,

where a and b label replicas. Approximating these by
setting

hyhhyh ø khyhlhyh 1 hyhkhyhl , (20)

we arrive at

Gjk ­ i
Z

D fhghp

j,ahk,ae2iS̃ , (21)

with S̃ ­ fG0g21 2 S, where S is again given by
Eq. (17).
Proceeding now to the evaluation of the self-energy, we
find

kGp
11l ­

1 1 F2

jvpj2 1 Bp
, kGp

12l ­

vp

jvpj2 1 Bp
,

kGp
21l ­

vp

p

jvpj2 1 Bp
, kGp

22l ­ 2
e 1 p2F1

jvp j2 1 Bp
,

(22)

where Bp ­ se 1 p2F1ds1 1 F2d and

F1 ­ 2G
Z L

0

ddqkGq
22l ,

F2 ­ G
Z L

0

ddqq2kGq
11l .

Analyzing this system of equations in the limit e ! 0, we
obtain

gpsvd ­

vp

p

jvpj2 1 bp2
. (23)

where the value of b is determined via the behavior of the
integral

Isbd ­ G
Z L

0

ddq
q2

jvqj2 1 bq2
. (24)

If Isb ­ 0d , 1, then b ­ 0; otherwise b is the (real and
positive) solution to the equation Isbd ­ 1. The former is
the case if v is not close to the negative real axis. In that
event, with b ­ 0, gpsvd ­ v21

p and ≠gpsvdy≠vp
­ 0,

so that rsvd ­ 0. Alternatively, if v is close to the
negative real axis, b . 0, gpsvd is not analytic in v and
rsvd fi 0.
Thus the boundary to the support of the density of
states, yBsxd, satisfies the equation

Isb ­ 0d ; G
Z L

0

ddq
q2

sx 1 Dq2d2 1 y2
B

­ 1 . (25)
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FIG. 2. Distribution of eigenvalues (dots) in the complex
plane and calculated boundary (solid line) of rsvd.

For small G, d . 2 and x , 0, we find

yBsxd ­ 6
pSd

2
gsxdjxj ~ 6Gjxjdy2, (26)

where Sd is the surface area of a d-dimensional unit
sphere. The DOS in the region x , 0, jyj , yB is

rsvd ­

D
s2pdd11Gjxj

. (27)

and elsewhere is zero. Thus the eigenvalues occupy
a wedge-shaped region in the complex plane, centered
around the negative real axis. The x-dependent width of
this region can be understood simply: If one assumes
that it is proportional to G, dimensional analysis implies
yBsxd ~ gsxdjxj. Similarly, the x dependence of rsvd
follows from the requirement that

R

dyrsx 1 iyd take the
value it has in the disorder-free system.
Turning to the time evolution of the particle density, we

find that the time Green’s function, defined in Eq. (5), is
the Fourier transform of a product of two factors:

knsr, tdl ­

1

s2pdd

Z

ddpeip?re2Dp2t

∑
sinsv0td

v0t

∏

, (28)

where v0 ­ yBsxd, evaluated at x ­ 2Dp2: v0 ­

spSdGqd dys2Dd. The first factor, e2Dp2t , is the familiar
consequence of simple diffusion; the second factor,
sinsv0tdyv0t, arises from advection. At weak disorder,
when the SCBA is a controlled approximation, the
advective factor differs significantly from 1 only where
the diffusive factor is small, so that kr2l , Dt. By
contrast, at strong disorder (when the SCBA is simply a
mean-field approximation), it is the advective factor that
sets the width of the density profile at short times, and
kr2l , sGtyDd2yd . This time dependence arises because
advection and diffusion contribute equally to particle
motion in this regime.

For general random flow, with G1 fi G2, an extension
of our approach again yields Eqs. (26)–(28), but with G1

replacing G. Thus, in particular, for potential flow sG1 ­

0d we reproduce correctly the fact that all eigenvalues
are real.
To test the theory developed above, we have calculated
numerically the eigenvalues of the FP operator for mixed
flow, discretized on a square lattice. Theory (adapted to
the discretized FP operator) and simulation are compared
in Fig. 2, for 50 realizations of a 32 3 32 lattice with
D ­ 1 and G ­ 0.25. The calculated shape of the support
of rsvd matches the data well; the fact that a finite fraction
of the eigenvalues have a vanishing imaginary part is a
finite-size effect, analyzed in detail in Ref. [15].
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