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Passive Scalars, Random Flux, and Chiral Phase Fluids
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We study the two-dimensional localization problem for (i) a classical diffusing particle advected
by a quenched random mean-zero vorticity field, and (ii) a quantum particle in a quenched random
mean-zero magnetic field. Through a combination of numerical and analytical techniques we argue that
both systems have extended eigenstates at a special point in the spectrum invariant under particle-hole
symmetry, where a sublattice decomposition obtains. In a neighborhood of this point, the Lyapunov
exponents of the transfer matrices acquire ratios characteristic of conformal invariance allowing an
indirect determination of 1yr for the typical spatial decay of eigenstates.

PACS numbers: 46.10.+z, 05.40.+j, 05.45.+b

In this paper we study two simple models for passive
advection of a diffusing field: (I) a diffusing scalar
density nsxd advected by a quenched random velocity
field Asxd described by the Fokker-Planck equation [1]:

≠tn ­ Lfpn ; D=2n 2 === ? sAnd , (I)

where D is the diffusivity; and (II) the random-flux model
[2] for a noninteracting quantum particle propagating in
a spatially random, zero-mean magnetic field B ; === 3
A ; ≠xAy 2 ≠yAx , where A now denotes the vector
potential, described by the Schrödinger equation

2i≠tc ­ Lrf c ; hsp 2 Ad2 1 V jc , (II)

c being the (complex) quantum wave function, p ;
2i=== the momentum operator, and V sxd the (scalar)
potential [3].
Model (II) has received much attention recently in the

context of the quantum Hall effect at filling factor n ­

1

2

[2]. An unresolved question is whether the system has
properties of a Fermi liquid, and, in particular, extended
states. Previous work has addressed the energy depen-
dence of the localization length jsEd moving inward from
the band edge, with authors arriving at opposite conclu-
sions. The most careful numerical study of model (II) to
date concludes that all states are localized [2(b)], whereas
others find a central band of extended states [2(a)]. An
analytic calculation using a replicated nonlinear sigma
model with a topological term [4] also obtains a band of
extended states.
Our purpose is twofold. First, we explore the conse-

quences of particle-hole symmetry at the band center of
these models, Ec, and describe numerical and analytical
evidence for a divergent localization length at this point.
Previous studies [2(b),5] did not allow for this symme-
try at the band center [6]. Second, we demonstrate that
the properties of random flux that have drawn so much
attention are exhibited by a much larger class of models,
among them the passive scalar model (I).
Magnetic field and vorticity are distinguished from

potential fields by their transformation under time re-

versal [7]. Writing the velocity in model (I) as A ­

===x 1 === 3 f, we observe that x , like V, is even un-
der time reversal, whereas f, (the source of vorticity
v ­ === 3 A ­ 2=2f), like B, is odd. A further physi-
cal similarity between the two models is that one expects
transport to be dominated by the longest streamlines
[1(b)] [8,9]; for the random-flux (passive scalar) model
with vanishing mean magnetic field (vorticity), these rare
streamlines run along the interfaces of opposing magnetic
field (vorticity). The Laplacian enables fields to tun-
nel (diffuse) among distinct closed streamlines, and cre-
ates competition between advection by streamlines that
can transport the field over long distances without at-
tenuation, and diffusion that leads to destructive interfer-
ence [10].
We study spatial decay of the eigenfunctions for lattice
approximations to Lfp and Lrf . Lfp is not self-adjoint,
and when f fi 0 its eigenvalues z occupy, in general, an
area in the complex plane. For given z we use well-
established numerical transfer-matrix methods and finite-
size scaling [11] to compute the localization length [12]
on a long strip.
The real scalar field n is discretized on a square lat-
tice of width L, length m. Boundary conditions in the
transverse (L) direction will be discussed later. n and x
are defined on nodes, A on links, and f on the nodes
of the dual lattice. We define lattice difference opera-
tors D1

mfx ; fx1em
2 fx and D2

mfx ; fx 2 fx2em
,

where em­x,y , are orthogonal lattice basis vectors. The
velocity is then A ­ D2 3 f 1 D1x , where D2 3
f ; s2D2

y f, D2
x fd represents the discrete curl. Defin-

ing the current J ­ 2DD1n 1 An, where fAng
m
x ;

1

2 A
m
x fnx 1 nx1em

g represents an average of the two ends
of the link, the equation of motion is ≠tn 1 D2 ? J ­ 0.
Similarly, to discretize the random-flux Hamiltonian we
define the lattice covariant derivative:

D1
m cx ; eiA

m
x cx1em

2 cx ,

Lrf ; D1
m D2

m 1 Vx .
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The vector potential A has been defined on links in the
same way as for the fluid; the scalar potential Vx vanishes
unless otherwise stated.
Values of the field can be computed recursively us-

ing the 2L 3 2L transfer matrices Wk , which yield val-
ues of c or n in lattice column k 1 1 and k given those
in columns k and k 2 1. Lyapunov exponents are ex-
tracted as logarithms of the 2L eigenvalues of the ma-
trix sW smdyW smdd1y2m in the limit m ! `, where W smd ;Qm

k­1 Wk; correlation lengths along the strip then corre-
spond to their inverses. We define the scaled localization
length by jLszd ­ 1ylLszdL, where lLszd is the exponent
smallest in magnitude. A critical or extended phase oc-
curs for those z where jLszd ! j`szd fi 0 for large L.
We first describe results for model (I) for incompress-

ible A ­ D2 3 f, taking the fx to be independent
random variables distributed uniformly over an interval
f2w, wg. When f ; 0 the eigenvalues fill (uniformly,
in d ­ 2) the real interval f28D, 0g. For nonzero f the
density of states broadens into a complex neighborhood
of this interval. Figure 1 displays jLszd using D ­ 1y4,
w ­ 1, L ­ 32, and periodic boundary conditions. The
peaks at z ­ 0, 28D arise because the (extended) eigen-
functions, corresponding, respectively, to nsxd ­ n0 and
to uniform antiferromagnetic nsxd, represent exact solu-
tions for any width. The structure is symmetric about the
line Re szd ­ Ec ; 24D, a feature that originates in an
exact particle-hole symmetry of Lfp . For L even, we di-
vide the lattice into its two equivalent antiferromagnetic
sublattices, with n1 and n2 the restriction of n to the two
sublattices, and l̂ ; s n1

n2
d. We can now express Lfp in

block form operating on l̂:

Lfp ­

µ
EcIL Q
Q̃ EcIL

∂
, (1)

FIG. 1. (a) Scaled localization length jLszd for model (I),
and contour plot. Parameters are D ­

1

4
, w ­ 1, L ­ 32,

with periodic boundary conditions. The inset shows jLszd for
model (II), with L ­ 32 and fluxes chosen independently on
each plaquette and uniformly on f0, 2pg (filled circles). Empty
circles display the ratio l2

Lyl1
L. Statistical error in jLszd is

. 5%.

where IL is the L 3 L unit matrix, Q̃ ­ TQÁT 21,
Á denotes transposition, and T time reversal. This
transformation inverts the sign of the antisymmetric parts
of Lfp . The symmetry may be stated as follows: If l̂z

is an eigenvector of Lfp with eigenvalue z, then l̂z̄ ;

szl̂p ; s np

1

2np

2
d is an eigenvector with eigenvalue z̄ ­

2Ec 2 zp. The same symmetry applies to the random
flux operator, where Ec ­ 4, z is real, andQy

­ Q̃.
At z ­ Ec the two sublattices decouple, and the eigen-
vectors of interest correspond to the zero eigenvalues ofQ
and Q̃. Furthermore, in the limit m ! `, the Lyapunov
exponents at Ec must occur in degenerate pairs; this de-
generacy is obtained numerically and disappears for any
z fi Ec. The decoupling is also the source of the striking
depression in jL at Ec seen in Fig. 1 for both models.
The depression and the degeneracy occur only for even

L. For odd L, periodic boundary conditions mix the two
sublattices; jLsEd reaches (at E . 22.0 for the random
flux model; see inset to Fig. 1) a plateau of twice its
degenerate value as one moves in from the band edges,
and maintains that value at the band center. For odd L
and free boundary conditions (as used in some numerical
studies [2(a)]), jLsEcd diverges as m ! ` for any finite
L. We obtain both degeneracy and divergence also for
the “q” models [2(a)], where the fluxes are restricted to
values 2pnyq with q, n integers. These properties have
not been identified before.
Numerical evidence alone cannot distinguish an infinite
localization length from a large but finite one. We
now offer analytic arguments in support of a divergent
correlation length at Ec for the random-flux model with
free boundary conditions. Let n̂k ; s nk

nk21
d represent the

2L-component vector composed of the nx in columns k
and k 2 1. With an appropriate choice of gauge, we
can write the transfer matrix in the form Wk ; s Qk

IL

2IL
0 d,

whereQk is Hermitian. Observe thatW
y
k JWk ­ J, where

J ; s 0
IL

2IL
0 d; the set of matrices satisfying this identity

constitutes a group. It follows that the eigenvalues of
Wk occur in inverse conjugate pairs, m, 1ymp, as do the
eigenvalues of any product of Wk’s.
The sublattice decomposition enables us to re-
organize the components of n̂k in the form
n̂k ­ col hn1

k , n1
k21, n2

k , n2
k21j. If L ­ 2l 1 1 is odd,

the number of components of n6
k will alternate with k

between l and l 1 1. The transfer matrix now takes
the block form Wk ­ s wk

0
0

w̃k
d, where wk ­ s uk

I
2I
0 d and

w̃k ­ s u
y
k
I

2I
0 d. This new form of the transfer matrix only

connects sites on the same sublattice, and the uk are no
longer Hermitian nor (for odd L) necessarily square.
Because the ensemble of random matrices weights uk

and u
y
k equally, we expect that the eigenvalues of the

submatrix products swsmdywsmdd1y2m and sw̃smdyw̃smdd1y2m

are identical in the limit m ! `, where wsmd ;
Qm

k­1 wk

and w̃smd ;
Qm

k­1 w̃k . It follows that the eigenvalues
of the full transfer-matrix product occur in degenerate
pairs; this degeneracy is observed numerically. Since
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the full transfer-matrix product is a group element, we
deduce that for odd L there must be a pair of eigenvalues
with modulus unity, one from each of the two submatrix
products, yielding a divergent jLsEcd.
For even L, an eigenvalue of modulus unity is not

expected for finite L, and we instead argue that a pair
of eigenstates exists at Ec in the thermodynamic limit.
To make further progress we turn our attention from the
transfer matrix W to the operator Lrf itself, and exploit
its off-diagonal block form (1) at Ec. (For convenience,
we translate the 0 of energy to Ec in this discussion.)
For a lattice with an odd number of sites, N , Q is not
square so that it has a nontrivial kernel and 0 is an
eigenvalue of Lrf . As a consequence of the singular
value decomposition, adding a new lattice site (reversing
the parity of N) can never increase the magnitude of the
smallest nonzero eigenvalue. Because the randomness in
Q can be expected to remove any accidental exact or
near degeneracy, we anticipate rather that the magnitude
of the smallest eigenvalue above 0 (and its particle-hole
conjugate below 0) diminishes as N ! `, yielding a
degenerate pair of 0 eigenvalues.
If there are indeed two independent eigenfunctions at

0 in the limit N ! ` through even values, they must
take the form s u

6y d, u, y the left, right eigenvectors
of Q so that Qyu ­ Qy ­ 0. Because kujyl fi 0,
in general, we see that the arbitrary relative phase of
u and y implies a continuous GLs1,C d symmetry at
Ec. Such a continuous symmetry is known to play an
important role in some closely related random-matrix
models. Wegner first observed the significance of the
sublattice decomposition in a class of random-matrix
models for localization in d ­ 2 [13]. It was later
noticed that the sublattice decomposition allows a new
continuous symmetry, which contains in the n ­ 0 replica
limit a factor of Us1d. For lattice models with spin,
this continuous symmetry leads to a divergent density of
states (DOS) and localization length [13]. Our numerics
indicate a finite DOS at Ec, a result that is not, in general,
inconsistent with a divergent correlation length. We are
pursuing an analogous replicated field theory calculation
for our model; results so far are consistent with the
existence of this symmetry [10].
We turn now to the neighborhood of the band center.

Assuming finite-size scaling, we expect jLszd to be
independent of L (though not of z; see [14]) as L ! ` in
the regime of extended states. In Fig. 2, we show jLszd
for several values of z and L. Close to Ec, numerical
values for jLszd are more or less independent of L when
z is on the lines Im szd ­ 0 or Re szd ­ Ec.
For Ec and its neighborhood we have examined the

entire Lyapunov spectrum, and find that after appropriate
scaling (see Fig. 3) the spectra for distinct L collapse
onto a single curve. In addition, for small nyL, ratios
of Lyapunov exponents take the form

ln
Lyl1

L ­ 2n 2 1 , (2)

FIG. 2. Scaled localization length jLszdyj16szd plotted as
a function of L for various z. 1, 3, square, *, and
circle represent, respectively, z ­ 21.0, 21.0 1 0.25i, 21.0 1
0.6i, 21.25, 21.25 1 0.25i. Error bars are displayed when
they exceed the symbol width.

where l
j
L denotes the jth largest positive Lyapunov

exponent. This form obtains to both models (I) and
(II) even when continued to complex A (this allows an
approximate interpolation between the two models), for
random independent A

m
x , and also when the Bx (fluxes) in

model (II) are taken to be independent random variables.
As explained elsewhere [14], the form Rn ; sn 1 xdyx
for the ratio of Lyapunov exponents suggests that the
single-particle Green’s function is conformally invariant
for a typical realization of the disorder, and typically
decays as 1yrh, where h ­ 2x. Evidently, for our
models h . 1.
So far we have discussed only divergence-free A.
For model (I), the addition of a random x leads to
a real nonzero diagonal component of the discretized
model at Ec (as does scalar potential disorder Vx for
model (II)—note that x may always be removed by a
gauge transformation). The diagonal components of the
disorder invalidate exact particle-hole symmetry and the
sublattice decomposition. When the disorder amplitude
for the divergence-free field sufficiently exceeds that of
the curl-free component, our numerics are consistent with
extended states, and the form x . 1y2 for the ratio
survives. In the opposite case, for large enough w, we
find that all states in the neighborhood of Ec are localized.
We have done further numerical computations in order
to isolate the property of the operators Lfp and Lrf

responsible for the apparent band of extended states [10].
It is found that symmetric real random-matrix models with
nearest-neighbor couplings and a sublattice decomposition
display at Ec degenerate extended states and x . 1y2,
but away from Ec all states are unambiguously localized,
as is observed for the q ­ 2 model [2(a)], and Rn has
no special form. The addition of a random, uncorrelated
antisymmetric matrix (real or complex) produces, in the
neighborhood of Ec, a band of states for which the
Lyapunov ratios satisfy x . 1y2 and jL has no detectable
dependence on L. Recalling that the symplectic group
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FIG. 3. Comparison of the ratios, Rn ­ lnyln0
, for various

different L with Eq. (2) (dashed line). The largest correlation
length corresponds to n ­ 0. A linear fit for small nyL yields
x ­ 0.50 6 0.02. To minimize the error in Rn we choose a
small n0 for which the error is less than 1%. We collapse
the ratios for different L by defining y ­ sn 1 1y2dyL and
rescaling the ratio by s2n0 1 1dyL. Parameters are z ­

21.0 1 0.25i, D ­

1

4 , and n0 ­ 8, 4, 2 for L ­ 64 (circle),
32 (square) and 16 (triangle), respectively. For z ­ 21.0 a
similar picture is obtained with x ­ 0.49 6 0.02. The inset
shows, for the same data set, the relative difference between
the numerically obtained values and Eq. (2). The dashed line
displays the statistical error.

constitutes the set of transformations under which a
bilinear antisymmetric form is invariant, we conjecture
that the usual assumption that this class of model has
merely unitary symmetry [2(b),4,5] may not be justified.
We propose that chiral phase fluids, systems with di-

vergent correlation lengths originating in a random anti-
symmetric contribution to their dynamics, are a general
phenomenon and share universal features. A full under-
standing of these systems must answer the question, not
so far resolved numerically, of whether the only extended
states are in fact at the band center, and if so, what sets
the scale of the correlation length in the remainder of the
band. Since our arguments are general in nature, we ex-
pect to see similar universal behavior in other systems,
among them the kinematic dynamo [15].
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