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We study the dynamics of a rigid card falling in air using direct numerical simulations
of the two-dimensional Navier–Stokes equation and a fluid force model based on
ordinary differential equations derived from recent experiments and simulations. The
system depends on three non-dimensional parameters, i.e. the thickness-to-width ratio,
the dimensionless moment of inertia, and the Reynolds number. By increasing the
thickness-to-width ratio in the direct numerical simulations and thereby the non-
dimensional moment of inertia we observe a transition from periodic fluttering to
periodic tumbling with a wide transition region in which the cards flutter periodically
but tumble once between consecutive turning points. In the transition region the
period of oscillation diverges and the cards fall vertically for distances of up to
50 times the card width. We analyse the transition between fluttering and tumbling
in the ODE model and find a heteroclinic bifurcation which leads to a logarithmic
divergence of the period of oscillation at the bifurcation point. We further discuss
the bifurcation scenario of the ODE model in relation to our direct numerical
simulations and the phase diagrams measured by Willmarth, Hawk & Harvey (1964)
and Belmonte, Eisenberg & Moses (1998).

1. Introduction
Leaves, tree seeds, and paper cards falling in air are spectacular examples of time-

dependent fluid dynamics at intermediate Reynolds numbers at which both inertial
and viscous effects are important. The trajectory of a falling card typically appears
to be very complex with the card either oscillating from side to side (fluttering)
or rotating and drifting sideways (tumbling). Despite fluttering and tumbling being
common everyday phenomena that have interested scientists for centuries, see the
qualitative discussion of tumbling by Maxwell (1854), little is known theoretically
about the nature of the transitions between fluttering, tumbling, and steady descent.

Willmarth, Hawk & Harvey (1964) measured a phase diagram for falling disks
with fluttering, tumbling, and steady descent. Both the three-dimensional motion of
a falling circular disk and the two-dimensional motion of a falling card depend
on six dimensional quantities, i.e. the diameter or the width of the object, 2a, the
thickness of the object, 2b, the density of the object, ρs , the density of the fluid,
ρf , the kinematic viscosity of the fluid, ν, and the acceleration due to gravity, g.
From the six dimensional quantities it is possible to form three non-dimensional
numbers. The phase diagram was constructed using the ratio between the thickness
and the diameter of the disk, β , the dimensionless moment of inertia, I ∗, and the
Reynolds number, Re. The experiment focused on the small-β limit in which the
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dynamics is independent of β and the phase diagram depends on Re and I ∗ alone.
The disks fall steadily and broadside on for Re below 100, and for larger values of
Re they flutter when I ∗ is small and tumble when I ∗ is large. Field et al. (1997) made
further experiments on falling disks and found a chaotic transition region between
fluttering and tumbling, Smith (1971) measured a qualitatively similar phase diagram
for falling plates, and Belmonte, Eisenberg & Moses (1998) studied the transition
from fluttering to tumbling with increasing I ∗ in a quasi-two-dimensional experiment
with a narrow container in which the plate motion was constrained mechanically to
be two-dimensional. Andersen, Pesavento & Wang (2005) measured the trajectories
of fluttering and tumbling plates using a quasi-two-dimensional setup and obtained
the instantaneous fluid forces from the measured accelerations. In the experiment the
plates were released in a water tank and allowed to fall freely without any constraints
on their motion. The plate length was much longer than its width and thickness, and
the plates were released so that they rotated about their long axis. Three-dimensional
effects at the tips were therefore negligible in the experiment, and the motion was
effectively two-dimensional.

In this paper we describe the phase diagram and the transitions using direct
numerical simulations of the two-dimensional Navier–Stokes equation and a fluid
force model based on ordinary differential equations derived from recent direct nu-
merical simulations (Pesavento & Wang 2004) and experiments (Andersen et al. 2005).
By increasing the thickness-to-width ratio and thereby the dimensionless moment
of inertia we find a transition between periodic fluttering and periodic tumbling.
We observe a wide transition region with periodic motion in the direct numerical
simulations and compare the findings with the apparently chaotic trajectories observed
in the quasi-two-dimensional experiment on falling plates by Andersen et al. (2005)
and the chaotic transition region found in the three-dimensional experiments on
falling disks by Willmarth et al. (1964) and Field et al. (1997).

The fluid force model, which contains both translational and rotational lift, was
introduced by Pesavento & Wang (2004) and compared favourably with experimental
results by Andersen et al. (2005). We discuss the assumptions and the limitations
of the theoretical model and the difference between the current model and existing
models proposed by Tanabe & Kaneko (1994), Mahadevan (1996), and Belmonte
et al. (1998). We show that the model depends naturally on the three non-dimensional
parameters suggested by Willmarth et al. (1964). The model has two different steady
solutions in which the card falls edge on and broadside on, respectively. The edge-on
fixed point is always unstable, whereas we find a transition between steady broadside-
on descent and oscillatory motion via a supercritical Hopf bifurcation in which the
broadside-on fixed point changes stability. We further analyse the transition between
fluttering and tumbling in the fluid force model and show that the transition is a
heteroclinic bifurcation which leads to a logarithmic divergence of the period of
oscillation at the bifurcation point. We conclude the paper with a comparison of the
bifurcation scenarios of the fluid force model and the direct numerical simulations.

2. Direct numerical simulations of fluttering and tumbling
2.1. Numerical method

We solve the two-dimensional Navier–Stokes equation for the flow around a rigid plate
with elliptical cross-section falling freely in a fluid. We use a computational method
which is similar to the technique applied by Wang (2000) for the two-dimensional flow
around a flapping wing with prescribed kinematics. The method makes use of the
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Figure 1. Trajectories obtained from direct numerical simulations of the two-dimensional
Navier–Stokes equation for freely falling plates in the transition range between fluttering
and tumbling: (a) periodic fluttering with the non-dimensional period of oscillation T = 8.1,
(b) fluttering close to the transition between fluttering and tumbling with T =17.3, (c) mixture
of fluttering and tumbling with T = 34.1 for β =1/11 and T = 43.4 for β = 1/12, and
(d) periodic tumbling with T = 12.1. The semi-major axes of the plates have unit length
in the four plots, and the periods of oscillation are made non-dimensional as described in § 4.

vorticity–stream function formulation and a body-fitted computational grid generated
by a conformal mapping. The method and its adaptation to model freely falling plates
is described in detail in Pesavento & Wang (2004) and Andersen et al. (2005).

2.2. Solutions in the transition range between fluttering and tumbling

Figure 1 shows a family of trajectories with different thickness-to-width ratio, which
range from periodic fluttering with β = 1/18 in figure 1(a) to periodic tumbling with
β = 1/8 in figure 1(d). The density ratio was ρs/ρf = 2.05 in the simulations and
the Reynolds number based on the semi-major axis and the average descent speed
was between 400 and 600. The trajectories in figures 1(a) and 1(d) are similar to
the periodic trajectories measured by Andersen et al. (2005) and alternate between
gliding at low angle of attack and fast rotational motion at the turning points. In
the parameter range between periodic fluttering and periodic tumbling we observe
a transition region with either asymmetric fluttering, as shown in figure 1(b), or



94 A. Andersen, U. Pesavento and Z. J. Wang

solutions in which the plate flutters in an apparently periodic fashion but tumbles
once between consecutive turning points as shown in figure 1(c).

A characteristic feature of the dynamics in the transition region is that the plates
fall vertically and edge on for long distances as shown for β = 1/12 in figure 1(c).
The time spent in the vertical edge-on descent is much longer than the time spent
gliding in periodic fluttering and periodic tumbling outside the transition region as
shown in figures 1(a) and 1(d). The length of the vertical descent and therefore the
period of oscillation diverges in the transition region. The periods of oscillation are
reported in non-dimensional form in the caption of figure 1 for comparison with
the results of the non-dimensional quasi-steady model in § 6.2. We find that the
period of oscillation increases by a factor of 5 in the transition region relative to the
period of oscillation for fluttering and tumbling outside the transition region, but due
to the large computational cost in the transition region we have not been able to
determine the precise functional form of the divergence based on our direct numerical
simulations.

2.3. Direct numerical solutions versus previous experiments

The presence of a transition region between periodic fluttering and periodic tumbling
is in agreement with the quasi-two-dimensional experiment on falling plates by
Andersen et al. (2005), but in disagreement with the quasi-two-dimensional experiment
by Belmonte et al. (1998) in which a sharp transition is found. We speculate that
the sharp transition observed by Belmonte et al. (1998) arises because the quasi-two-
dimensional flow is established using a narrow flow tank in which the falling plates
touch the container walls in order to constrain their motion to be two-dimensional.
Another qualitative difference between the two experiments is related to centre of
mass elevation. The trajectories reported by Belmonte et al. (1998) do not display
centre of mass elevation, whereas we find numerically (Pesavento & Wang 2004)
and experimentally (Andersen et al. 2005) that the centre of mass is elevated at the
turning points in fluttering and tumbling. We speculate that the absence of center of
mass elevation in the experiment by Belmonte et al. (1998) is due to friction between
the plates and the container walls. In the experiment by Andersen et al. (2005) such
additional damping is not present, since the plates fall without touching the container
walls.

The direct numerical simulations show that the transition between periodic
fluttering and periodic tumbling does not always take place through a sequence of
apparently chaotic states like the trajectories observed in the quasi-two-dimensional
experiment by Andersen et al. (2005) and in the three-dimensional experiments on
circular disks by Willmarth et al. (1964) and Field et al. (1997). The results of the
direct numerical simulations could suggest that apparently chaotic trajectories are
found experimentally because the dynamics in the transition range is very sensitive to
experimental noise. However, it could also be that the transition between fluttering
and tumbling in some cases, e.g. at higher values of the Reynolds number, takes place
through a sequence of chaotic solutions.

3. Phenomenological model of a falling card
3.1. Governing differential equations

To gain further insight into the nature of the transition between fluttering and
tumbling we consider a phenomenological model of the card aerodynamics based on
ordinary differential equations (ODEs) introduced by Pesavento & Wang (2004). We
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Figure 2. The velocity components vx ′ and vy ′ in the laboratory reference frame are defined
with respect to the coordinate system following the rotation of the card, whereas vx and vy

are defined with respect to the fixed coordinate system in the laboratory reference frame.

aim to identify the bifurcation between fluttering and tumbling in the ODE model
and to quantify the divergence of the period of oscillation at the transition point.

We model the two-dimensional dynamics of a rigid card falling in a fluid by ordinary
differential equations with fluid force contributions from added mass, lift, and drag.
We apply a quasi-steady approximation in which the fluid forces are expressed in
terms of the kinematic variables of the card alone. The Reynolds number based on
the semi-major axis and the average descent velocity of a paper card falling in air
is of the order of 103. The quadratic lift and drag terms in the model are designed
to describe the aerodynamics at such intermediate Reynolds numbers between 102

and 103. We assume that the card has elliptical cross-section with half-major axis,
a, and half-minor axis, b. We write the model in the coordinate system co-rotating
with the card, and we define the angle θ and the components of the centre of
mass velocity vx ′ and vy ′ as shown in figure 2. We have vx = vx ′ cos θ − vy ′ sin θ and
vy = vx ′ sin θ + vy ′ cos θ , where vx is the horizontal velocity component and vy is the
vertical velocity component.

Our model consists of the following set of coupled ordinary differential equations:

(m + m11)v̇x ′ = (m + m22)θ̇vy ′ − ρf Γ vy ′ − π(ρs − ρf )abg sin θ − F ν
x ′, (3.1)

(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + ρf Γ vx ′ − π(ρs − ρf )abg cos θ − F ν
y ′, (3.2)

(I + Ia) θ̈ = (m11 − m22)vx ′vy ′ − τ ν. (3.3)

The lift is orthogonal to the direction of motion and proportional to the circulation,
Γ = Γ (vx ′, vy ′, θ̇), the drag, Fν = Fν(vx ′, vy ′, θ̇), is opposite to the direction of motion,
and the dissipative torque, τ ν = τ ν(vx ′, vy ′, θ̇), is opposite to the direction of rotation.

We let m and I denote the mass and the moment of inertia per unit length:

m = πρsab, I = 1
4
πρsab(a2 + b2). (3.4)
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From inviscid theory (Sedov 1965) we have the added mass coefficients m11 and m22,
and the added moment of inertia, Ia , for the elliptical object:

m11 = πρf b2, m22 = πρf a2, Ia = 1
8
πρf (a2 − b2)2. (3.5)

In the absence of viscous effects the model reduces to Kirchhoff’s differential equations
for a solid body in an inviscid and irrotational flow. In Kirchhoff’s equations the fluid
circulation has an arbitrary constant value. For discussion and analysis of Kirchhoff’s
equations see Lamb (1945), Kozlov (1989), and Aref & Jones (1993).

3.2. Circulation and lift

The current model of the fluid circulation was developed based on recent direct
numerical simulations by Pesavento & Wang (2004) and experiments by Andersen
et al. (2005). We found that the circulation for fluttering and tumbling cards in the
Reynolds number range between 102 and 103 depends on both the translational speed
and the angular velocity of the card:

Γ = ±CT a

√
v2

x ′ + v2
y ′ sin 2α + 2CRa2θ̇ , (3.6)

where α is the angle of attack and CT and CR are dimensionless coefficients. The sign
of the translational term depends on the direction of motion and the orientation of
the card. In terms of vx ′ , vy ′ , and θ̇ we have

Γ = −2CT a
vx ′vy ′√
v2

x ′ + v2
y ′

+ 2CRa2θ̇ . (3.7)

The translational term reduces to the Kutta–Joukowski lift at low angles of attack
and takes stall into account at high angles of attack. This model of the circulation
is different from previous models, where either an arbitrary constant circulation was
assumed (Mahadevan 1996) or the classical low angle of attack Kutta–Joukowski lift
was applied (Tanabe & Kaneko 1994; Belmonte et al. 1998). The translational and
the rotational contribution to the circulation both play important roles as discussed
in Pesavento & Wang (2004) and Andersen et al. (2005). Translational lift provides
an important contribution to the fluid forces during the gliding segments in fluttering
as illustrated in figure 1(a), whereas rotational lift is the dominant lift mechanism in
tumbling. The centre of mass of the plate would not elevate at the turning points as
illustrated in figure 1(d) without the rotational lift term.

3.3. Drag and dissipative torque

The drag and the dissipative torque depend on the Reynolds number. We follow
Wang, Birch & Dickinson (2004) and in the range of intermediate to high Reynolds
number we apply a quadratic drag with the following dependence on the angle of
attack:

Fν = ρf a(A − B cos 2α)
√

v2
x ′ + v2

y ′(vx ′, vy ′)

= ρf a

[
A − B

v2
x ′ − v2

y ′

v2
x ′ + v2

y ′

]√
v2

x ′ + v2
y ′(vx ′, vy ′), (3.8)
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where A and B are dimensionless constants. For the dissipative torque we use an
expansion to second order in the angular velocity:

τ ν = πρf a4

[
U

L
µ1 + µ2|θ̇ |

]
θ̇ , (3.9)

where L is the characteristic length scale, U is the characteristic velocity scale (see the
discussion in § 4), and µ1 and µ2 are dimensionless constants. The fluid torque model
is compared with the measured fluid torque and the modelling of the dissipative
torque term is discussed in Andersen et al. (2005).

The Reynolds number enters the model implicitly through the values of the non-
dimensional coefficients CT , CR , A, B , µ1, and µ2. In the following we shall use lift
and drag coefficients from the literature (Wang et al. 2004), whereas we will fix the
coefficients for the dissipative torque so that the time scale for the oscillatory motion
is correct and leads to qualitatively correct solutions with periodic fluttering and
periodic tumbling. We conjecture that out of the six non-dimensional coefficients the
two dissipative torque coefficients depend most sensitively on the Reynolds number,
and that µ1 and µ2 increase with decreasing Reynolds number corresponding to an
increase in the damping of the oscillatory motion with decreasing Reynolds number.

3.4. Validity of the quasi-steady approximation

The quasi-steady force model was compared with measured fluid forces on freely
falling plates in the quasi-two-dimensional experiment by Andersen et al. (2005). It
was found that the model captures the main features of the measured fluid forces for
both fluttering, tumbling, and trajectories in the transition region between fluttering
and tumbling with Reynolds number between 102 and 103. There are two main types
of effects which are not accounted for in the quasi-steady approximation, i.e. unsteady
corrections due to acceleration and effects due to the interaction of the card with
existing vortex structures. The first type of unsteady effect includes development of
lift during translational acceleration from rest at low angle of attack (Wagner 1925)
and unsteady forces due to vortex formation at both leading and trailing edges during
translational accelerating at high angle of attack (Pullin & Wang 2004). The second
type of unsteady effect can be significant when the quasi-steady approximation is
applied to problems like flapping flight in which a wing is oscillated back and
forth and moves into its own wake (Dickinson, Lehmann & Sane 1999). However, a
freely falling card does not interact with its own wake and such effects are of little
significance in the present study.

4. Non-dimensional equations
We write the governing equations (3.1)–(3.3) in dimensionless form using the length

scale, L, and the velocity scale, U , which we define by the expressions

L = a, U =
√

(ρs/ρf − 1)gb. (4.1)

The average terminal velocity, U , is estimated by balancing gravity with a quadratic
drag. Three non-dimensional parameters can be constructed from the six dimensional
quantities described in the introduction. We follow Willmarth et al. (1964) and apply
the thickness-to-width ratio, β = b/a, the dimensionless moment of inertia

I ∗ =
ρsb

ρf a
, (4.2)
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and the Reynolds number based on the semi-major axis and the terminal velocity

Re=
aU

ν
. (4.3)

Using the characteristic scales and the three non-dimensional numbers we obtain the
following non-dimensional governing equations:

(I ∗ + β2)v̇x ′ = (I ∗ + 1)θ̇vy ′ − Γ vy ′ − sin θ − F ν
x ′, (4.4)

(I ∗ + 1)v̇y ′ = −(I ∗ + β2)θ̇vx ′ + Γ vx ′ − cos θ − F ν
y ′, (4.5)

1
4

[
I ∗(1 + β2) + 1

2
(1 − β2)2

]
θ̈ = (β2 − 1)vx ′vy ′ − τ ν, (4.6)

where we differentiate with respect to the non-dimensional time and use vx ′ , vy ′ , Γ ,
Fν , and τ ν to denote the non-dimensional quantities. We apply the lift and the drag
(3.7)–(3.9) which are valid in the intermediate to high Re range and for which the
coefficients depend implicitly on Re. In non-dimensional form we have

Γ =
2

π


−CT

vx ′vy ′√
v2

x ′ + v2
y ′

+ CRθ̇


 , (4.7)

Fν =
1

π

[
A − B

v2
x ′ − v2

y ′

v2
x ′ + v2

y ′

]√
v2

x ′ + v2
y ′(vx ′, vy ′), (4.8)

τ ν = [µ1 + µ2|θ̇ |]θ̇ . (4.9)

In the following we investigate the dependence on the non-dimensional parameters
and solve the equations numerically in the range of small thickness-to-width ratio.

5. Numerical solutions with small thickness-to-width ratio
5.1. Small thickness-to-width ratio

In the limit of small thickness-to-width ratio, β � 1, equations (4.4)–(4.6) reduce to

I ∗v̇x ′ = (I ∗ + 1)θ̇vy ′ − Γ vy ′ − sin θ − F ν
x ′, (5.1)

(I ∗ + 1)v̇y ′ = −I ∗θ̇vx ′ + Γ vx ′ − cos θ − F ν
y ′, (5.2)

1
4

(
I ∗ + 1

2

)
θ̈ = −vx ′vy ′ − τ ν. (5.3)

In this limit the model depends on Re and I ∗ alone in agreement with the phase
diagrams measured by Willmarth et al. (1964), Smith (1971), and Field et al. (1997).
We emphasize that the equations do not depend on the density ratio, but explicitly
on the non-dimensional moment of inertia defined in equation (4.2).

5.2. Numerical solutions

Figure 3 shows numerical solutions of equations (5.1)–(5.3) supplemented by the
terms (4.7)–(4.9) with CT = 1.2, CR = π, A= 1.4, and B = 1.0, see Wang et al. (2004).
For the dissipative torque we set µ1 = µ2 = 0.2, which determines the time scale for
the oscillations relative to the time scale characterizing the vertical descent and leads
to solutions with periodic fluttering and periodic tumbling in qualitative agreement
with the direct numerical solutions shown in figure 1.

Figure 3 shows periodic fluttering for I ∗ = 1.1, period-one tumbling for I ∗ = 1.4,
period-two tumbling for I ∗ = 1.45, periodic mixture of fluttering and tumbling for
I ∗ = 1.6, chaotic dynamics for I ∗ = 2.2, and small-amplitude broadside-on fluttering
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Figure 3. Numerical solutions of the non-dimensional equations (5.1)–(5.3) showing the card
trajectories: (a) periodic fluttering for I ∗ = 1.1, (b) period-one tumbling for I ∗ = 1.4, (c)
period-two tumbling for I ∗ = 1.45, (d) periodic mixture of fluttering and tumbling for I ∗ = 1.6,
(e) chaotic dynamics for I ∗ = 2.2, and (f ) small-amplitude broadside-on fluttering for I ∗ = 3.0.

for I ∗ = 3.0. As expected from the phase diagram measured by Willmarth et al. (1964)
and the study by Belmonte et al. (1998) we observe a transition from fluttering
to tumbling with increasing I ∗ as shown in figures 3(a) and 3(b). The periodic
solutions are independent of the initial conditions and follow after short transients.
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The fluttering with I ∗ = 1.1 and the tumbling with I ∗ = 1.4 alternate between gliding
at low angle of attack and fast rotational motion and centre of mass elevation at the
turning points in agreement with the direct numerical simulations by Pesavento &
Wang (2004) and the experiment by Andersen et al. (2005). We find a period-
doubling bifurcation between I ∗ =1.4 and I ∗ =1.45, and we note that the typical
tumbling motion has a period-two structure as illustrated by the direct numerical
solution shown in figure 1(d).

With I ∗ = 1.6 we find a periodic solution in which the card displays a mixture of flut-
tering and tumbling, and with I ∗ =2.2 we find a chaotic solution with a maximum Lya-
punov exponent of λmax = 0.13 ± 0.01. Chaotic solutions, for which the solution with
I ∗ = 2.2 is a typical example, are found with µ1 = µ2 = 0.2 and I ∗ in the range between
1.8 and 2.8 as shown in figure 4(b) below. The card in figure 3(f ) oscillates about
the broadside-on fixed point. The broadside-on fixed point becomes stable and the
oscillations are damped out if the dissipative torque is increased and the characteristic
dissipative time scale for the decay of angular momentum is decreased. In the following
we describe this bifurcation and the bifurcation between fluttering and tumbling.

6. Fixed points and bifurcations
6.1. Transition between steady descent and oscillatory motion

The differential equations have four steady solutions in which the card falls vertically
and gravity is balanced by drag, i.e. two fixed points for which the card falls edge on:




vx ′

vy ′

θ

θ̇


 =




∓
√

π

A − B

0
1
2
π, 3

2
π

0


 =




∓V

0
1
2
π, 3

2
π

0


 , (6.1)

and two fixed points for which the face of the card is normal to the direction of
motion: 


vx ′

vy ′

θ

θ̇


 =




0

∓
√

π

A + B

0, π
0


 =




0

∓W

0, π
0


 (6.2)

Figure 4(a) illustrates the edge-on and the broadside-on steady solutions. We use
V and W to denote the edge-on descent speed and the broadside-on descent speed,
respectively. In the following we obtain the phase diagram for the system (5.1)–(5.3)
in the I ∗ versus µ1 plane and show that the transition between steady descent and
oscillatory motion and the transition between fluttering and tumbling are related to
the fixed points.

Figure 4(b) shows the phase diagram in the I ∗ versus µ1 plane with fluttering,
tumbling, and steady broadside-on descent as we vary I ∗, µ1, and µ2 while keeping
µ1 = µ2 and CT , CR , A, and B fixed. The transition between steady broadside-on
descent and oscillatory motion takes place as the broadside-on fixed point goes from
being stable to being unstable via a Hopf bifurcation at the bifurcation curve:

µ1 =
1

4

√
3

5π

2I ∗ + 1

I ∗ − 1
. (6.3)
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Figure 4. (a) Fixed points and descent velocities. (b) Phase diagram in the I ∗ versus µ1 plane
with the inset showing a magnification of the transition region between periodic fluttering and
periodic tumbling. Numerical solutions of equations (5.1)–(5.3) and stability boundary for the
broadside-on fixed point (solid curve). Periodic fluttering (circles), steady broadside-on descent
(plus signs), periodic broadside-on fluttering (crosses), periodic tumbling (stars), periodic
mixture of fluttering and tumbling (diamonds), and chaos (triangles).

The solid line in figure 4(b) shows the bifurcation curve which separates solutions
with steady broadside-on descent and solutions with oscillatory motion. We find
numerically that the size of the limit cycle grows continuously from zero and that
the oscillation frequency in the neighbourhood of the bifurcation curve is equal to
the absolute value of the imaginary parts of the complex-conjugate eigenvalues along
the bifurcation curve. These numerical results indicate that the Hopf bifurcation is
supercritical.

The edge-on fixed point is unstable for all values of I ∗ and µ1 since the vx ′vy ′-
term in equation (5.3) acts to rotate the card in the same direction as any small
perturbation away from the edge-on orientation. For the broadside-on fixed point the
vx ′vy ′-term instead acts in the opposite direction to any small perturbation away from
the broadside-on orientation and the fixed point is stable if I ∗ and µ1 are sufficiently
large.

6.2. Transition between fluttering and tumbling

The transition from fluttering to tumbling with increasing I ∗ and constant µ1 and µ2

shown in figures 3(a) and 3(b) is a heteroclinic bifurcation. The critical value of I ∗

increases when the dissipative torque is increased as shown in the inset of figure 4(b).
Figure 5(a) shows numerical solutions of equations (5.1)–(5.3) in the vicinity of the
bifurcation point I ∗

C ≈ 1.2191. The cards fall edge on and accelerate downward for
approximately 25 card widths, and when the cards reach the maximum descent speed
they flutter for I ∗ =1.2190 and tumble for I ∗ = 1.2192. Figure 5(b) shows the phase-
space trajectory for fluttering projected onto the three-dimensional space spanned by
vy ′ , θ , and ω, where we use the definition ω ≡ θ̇ . The trajectory spirals in toward one
of the edge-on fixed points, moves away on the unstable manifold, and follows the
heteroclinic orbit to the other edge-on fixed point. Figure 5(c) shows the phase-space
trajectory in the neighbourhood of the edge-on fixed point. The linearized equation
for vx ′ in the neighbourhood of the edge-on fixed point is decoupled from the three
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Figure 5. The transition between fluttering and tumbling. (a) Numerical solutions of equations
(5.1)–(5.3) below and above the bifurcation point I ∗

C ≈ 1.2191; (b) and (c) the phase-space
trajectory for I ∗ = 1.2190 projected onto the space spanned by vy ′ , θ , and ω (with ω ≡ θ̇ ); and
(d) the logarithmic divergence of the period of oscillation, T , in the neighbourhood of I ∗

C:
theoretical prediction (solid line) and numerical results with I ∗ < I ∗

C (circles) and I ∗ > I ∗
C (stars).

other linearized equations and the direction is stable, λs = −0.5854. The three other
linearized equations are coupled and the eigenvalue equation has one positive real
root, λu = 0.3813, and a pair of complex-conjugate roots with negative real part,
λ± = −0.9861 ± i2.5949. The dynamics in the three-dimensional space spanned by vy ′ ,
θ , and ω therefore resembles Silnikov’s phenomenon (Guckenheimer & Holmes 1983).
In general the existence of a Silnikov bifurcation opens the possibility for chaos,
but in the present case the solutions in the vicinity of the bifurcation point are not
chaotic. However, the solutions close to the bifurcation are sensitive to noise, and the
numerical integration must be carried out with high accuracy in the transition region.

The period of oscillation, T , diverges logarithmically at the bifurcation point:

T = T0 +
2

λu

log
1

|I ∗ − I ∗
C | . (6.4)

The logarithmic prefactor is inversely proportional to λu evaluated at the bifurcation
point, and the logarithmic divergence of T is a characteristic signature of homoclinic
and heteroclinic bifurcations (Gaspard 1990). The factor of 2 in equation (6.4)
appears because the saddle fixed point is encountered twice during each full period
of oscillation as shown in figure 5(b). Figure 5(d) shows a semi-logarithmic plot of
|I ∗ − I ∗

C | versus T obtained numerically with I ∗ < I ∗
C (circles) and I ∗ > I ∗

C (stars).
The numerical results are in perfect agreement with the theoretical prediction (solid
line) with the eigenvalue λu = 0.3813 and the fit parameter T0 = 4.3629.
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7. Summary and discussion
We have presented direct numerical simulations of the two-dimensional Navier–

Stokes equation for the flow around a card falling freely in a fluid. We have found a
transition between fluttering and tumbling by changing the thickness-to-width ratio
and thereby the non-dimensional moment of inertia. In the wide transition region we
have observed periodic solutions in which the cards flutter periodically but tumble
once between consecutive turning points, and we have found that the period of
oscillation diverges.

To further investigate the transition between fluttering and tumbling we have
analysed a phenomenological model with both translational and rotational lift for a
rigid card falling in air, and we have shown that the model depends on the thickness-
to-width ratio, the dimensionless moment of inertia, and the Reynolds number. We
have shown that the transition between stable broadside-on descent and oscillatory
motion is a supercritical Hopf bifurcation. By investigating the numerical solutions
of the phenomenological model we have shown that the transition between fluttering
and tumbling in the model is a heteroclinic bifurcation which leads to a logarithmic
divergence of the period of oscillation with a prefactor that is inversely proportional
to the eigenvalue of the unstable mode at the edge-on saddle fixed points.

The bifurcation scenario of the phenomenological model agrees with important
features of the transition between fluttering and tumbling observed in the direct
numerical simulations, including the long vertical gliding segments and the divergence
of the period of oscillation. However, the phenomenological model predicts a sharp
transition between fluttering and tumbling, whereas the direct numerical simulations
show a wide transition region with solutions that are mixtures of fluttering and
tumbling. Such solutions are also found in the phenomenological model, but at larger
values of the dimensionless moment of inertia, and they are apparently not related
to the transition between fluttering and tumbling. The direct numerical simulations
show that the transition between fluttering and tumbling does not have to take place
through a sequence of chaotic solutions, but they do not exclude the possibility of
chaos at the transition, e.g. at higher Reynolds numbers. We hope that the present
work will encourage further studies to elucidate the bifurcation structure of the
Navier–Stokes equation for the flow around a falling card.

We thank John Guckenheimer, Sovan Lal Das, Lakshminarayanan Mahadevan,
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supported by NSF, ONR, AFOSR, and the Packard Foundation.
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