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We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional
flow at Reynolds number of 103, which is typical for a leaf or business card falling
in air. We quantify the trajectories experimentally using high-speed digital video at
sufficient resolution to determine the instantaneous plate accelerations and thus to
deduce the instantaneous fluid forces. We compare the measurements with direct
numerical solutions of the two-dimensional Navier–Stokes equation. Using inviscid
theory as a guide, we decompose the fluid forces into contributions due to acceleration,
translation, and rotation of the plate. For both fluttering and tumbling we find that
the fluid circulation is dominated by a rotational term proportional to the angular
velocity of the plate, as opposed to the translational velocity for a glider with fixed
angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque
is one to two orders of magnitude smaller than the torque on a glider with fixed angle
of attack. Based on these results we revise the existing ODE models of freely falling
plates. We get access to different kinds of dynamics by exploring the phase diagram
spanned by the Reynolds number, the dimensionless moment of inertia, and the
thickness-to-width ratio. In agreement with previous experiments, we find fluttering,
tumbling, and apparently chaotic motion. We further investigate the dependence on
initial conditions and find brief transients followed by periodic fluttering described
by simple harmonics and tumbling with a pronounced period-two structure. Near the
cusp-like turning points, the plates elevate, a feature which would be absent if the lift
depended on the translational velocity alone.

1. Introduction
Leaves, tree seeds, and paper cards which flutter (oscillate from side to side) or

tumble (rotate and drift sideways) are beautiful everyday examples of solid objects
moving in a fluid. To predict their complex trajectories requires knowledge of the
instantaneous fluid forces. Although determining the forces on a moving geometry in
a fluid is a classical problem, only few analytical results exist and they are in special
limits such as Stokes flow and inviscid irrotational flow around a steadily translating
airfoil. In these steady flows, the fluid forces on a given object depend purely on the
kinematic variables, e.g. the translational velocity and the angle of attack in the case
of a simple glider. In contrast, most objects moving in a fluid encounter unsteady
flows for which it is not clear to what degree quasi-steady models based on inviscid
theory apply.

We choose to study freely falling plates for three reasons. First, it is a natural towing
tank experiment with gravity being the driving force. Because the plates fall freely,
the net force is directly related to the plate acceleration, which can be determined by
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tracking the motion with high-speed digital video. This gives us a method for quantify-
ing simultaneously the instantaneous kinematics and the fluid forces, thus providing
data to test models of fluid forces. In addition, it is straightforward to generate a wide
range of complex motions by changing the properties of the plates such as the
thickness-to-width ratio of the plate cross-section. Second, the unconstrained dynamics
of freely falling plates driven by gravity is interesting in its own right, and it is analo-
gous to problems such as seed dispersal by wind (McCutchen 1977; Augspurger 1986)
and air bubbles rising freely in a liquid (Magnaudet & Eames 2000). Improved force
models have important applications for these complex problems, e.g. to elucidate
instability mechanisms and transitions related to change in bubble geometry and
boundary conditions. Third, our study is in part motivated by our interest in flapping
flight. There has been much recent progress in studies of the unsteady forces on flap-
ping wings with wing kinematics similar to those of flying insects in flapping flight
(Weis-Fogh & Jensen 1956; Ellington 1984; Dickinson 1996; Sane 2003; Wang 2005).
From this perspective, studies of freely falling plates give us access to a different
family of periodic solutions, where the external driving force is prescribed instead of
the wing kinematics.

Studies of freely falling plates have a long history starting with Maxwell (1854) who
described tumbling qualitatively before the development of classical aerodynamics.
However, most experiments have focused on qualitative and average properties and
not on deducing the instantaneous fluid forces (Dupleich 1941; Willmarth, Hawk &
Harvey 1964; Smith 1971; Field et al. 1997; Belmonte, Eisenberg & Moses 1998;
Mahadevan, Ryu & Samuel 1999). Dupleich (1941) measured the angle of descent
and the average tumbling frequency as functions of wing loading and ratio between
plate length and width. Willmarth et al. (1964) measured a phase diagram for falling
disks with steady descent, fluttering, and tumbling, and in the limit of small thickness-
to-width ratio they found that the final state depends only on the Reynolds number
and the dimensionless moment of inertia. Smith (1971) measured a phase diagram for
falling plates qualitatively similar to the one for falling disks, Field et al. (1997) made
further experiments on freely falling disks with apparently chaotic motion, Belmonte
et al. (1998) quantified the transition from fluttering to tumbling in a quasi two-
dimensional experiment, and Mahadevan et al. (1999) observed a scaling law for the
dependence of the rotational speed on the width of a tumbling card. Jones & Shelley
(2005) proposed a falling card model based on inviscid theory and the unsteady Kutta
condition, but the method has so far not been implemented numerically to model
periodic fluttering and tumbling.

Tumbling has also been studied in the context of free and fixed-axis auto-rotation
as reviewed by Lugt (1983). Wind-tunnel experiments on fixed-axis auto-rotation of
plates (Smith 1971; Skews 1990) and polygonal objects (Skews 1991) were carried out
at Reynolds numbers in the range 104–105. Fixed-axis auto-rotation and tumbling
of a freely falling plate have some similarities, but there are significant differences
between the two phenomena. The most important difference is that fixed-axis auto-
rotation involves only the rotational degree of freedom of the plate, and thus the
coupling between translation and rotation is absent. Therefore it is not clear a priori
how results on the two different types of auto-rotation are related.

Our main goal in this paper is to describe the motion of freely falling rigid plates
based on detailed measurement of the plate trajectories and from this to learn about
the instantaneous fluid forces. We record the trajectories using high-speed digital video,
which gives us sufficient temporal and spatial resolution to obtain instantaneous trans-
lational and rotational velocities and to extract the instantaneous fluid forces and
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Figure 1. The experimental apparatus; (a) the transparent glass container, the release mecha-
nism, the falling plate, and the high-speed digital video camera shown schematically; (b) the
release mechanism mounted on top of the container. The aluminum plate (1) is held at its
midpoint by the clamp (2) below the water surface and it is aligned horizontally using the two
bars (3). The plate is released when the clamp is opened using the small electromagnet (4).

torques on the plates. The experiment is essentially two-dimensional, and it allows us
to compare the measurements with direct numerical simulations of the Navier–Stokes
equation for a rigid body falling in a two-dimensional flow. In this way we supplement
the experiment with numerical flow visualizations. We describe the computed wake
structure and compare the measured and the computed fluid forces.

The measured and the computed forces allow a direct test of the force models pro-
posed in the literature (Tanabe & Kaneko 1994; Mahadevan 1996; Belmonte et al.
1998; Pesavento & Wang 2004). Our force model is based on Kirchhoff’s equations
governing the motion of a solid in an inviscid fluid (Lamb 1945). A missing quantity in
inviscid theory is the instantaneous circulation. We test the recent model of the circu-
lation by Pesavento & Wang (2004), which contains both translational and rotational
contributions. We compare the model predictions with the measured forces, and
discuss the force contributions due to acceleration, translation, and rotation.

2. Experimental and numerical methods
2.1. Experimental setup and image analysis

We measure the trajectories of small aluminium plates which fall in a water tank in
an essentially two-dimensional experiment. The experiment is conducted using a rect-
angular glass container which is 30 cm wide, 45 cm high, and 75 cm long, see figure 1(a).
The container is filled with water, and a release mechanism on top of the container
allows us to drop the plates below the water surface with well-controlled initial
conditions. The release mechanism consists of a metal clamp which holds the plates
at their midpoint and opens using a small electromagnet as shown in figure 1(b).

The plates are 19 cm long and between 0.6 cm and 1.1 cm wide. The large length-
to-width ratios of between 15 and 30 make the influence of three-dimensional effects
at the ends negligible. In this way the setup is different from the one used by Smith
(1971) in which the length to width ratio was between 3 and 4, and tip plates were
used to reduce three-dimensional effects. In our experiment the plates are released so
that they rotate about their axis of symmetry in the length direction and fall with two-
dimensional trajectories in the plane normal to the length direction. The plates thus
fall through the water without any constraints on their motion and without touching
the walls of the container. This feature makes the setup different from the one used
by Belmonte et al. (1998) in which the container is narrow and the plates touch the
sides of the container to constrain their motion to be two-dimensional. The plate
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motion depends sensitively on the drag and the dissipative fluid torque, and any addi-
tional damping from friction between the plate and the container walls could affect
the behaviour at the turning points in particular. In the present experiment such
additional damping is absent since there are 5 cm wide spacings between the plate
tips and the container walls.

We record the trajectories using high-speed digital video at 400 to 500 frames per
second. The framerate is sufficient to resolve both the translational and the rotational
motion during all parts of the descent, including the turning points which are domi-
nated by fast rotational motion. We position the camera on one side of the transparent
glass container, see figure 1(a), and illuminate a white background homogeneously
on the opposite side of the container. In each frame we observe the dark plate cross-
section on the white background and identify the centre and the orientation of the
plate cross-section. The measured trajectories are smooth, and we are able to obtain
instantaneous velocities using a finite difference scheme. However, we have to filter
out high-frequency noise using the Fourier transform to obtain instantaneous accelera-
tions. In the following we present velocities and forces where high-frequency noise is
filtered out.

2.2. Direct numerical solutions of the Navier–Stokes equation

We solve the two-dimensional Navier–Stokes equation for the flow around the plate
in the vorticity–stream function formulation. In the case of a symmetric and freely
falling plate the fluid force acts near the centre of mass, and the resulting torque
relative to the centre of mass is small. The accuracy of the solution of the coupled
system is therefore determined by the error in the pressure torque. To obtain sufficient
accuracy we use a fourth-order finite difference scheme introduced by E & Liu (1996)
and a body-fitted computational grid generated by a conformal mapping. To avoid
singularities at the corners of the two-dimensional plates we use an elliptical cross-
section and the method applied by Wang (2000) for the two-dimensional flow around
a flapping wing with prescribed kinematics. In body-fixed elliptical coordinates (µ, φ)
we have

∂(Sω)

∂t
+ (

√
Su · ∇)ω = ν∇2ω, (2.1)

∇ · (
√

Su) = 0, (2.2)

where u is the velocity field, ω the vorticity field, and ν the kinematic viscosity of the
fluid. The scaling factor

S(µ, φ) = c2(cosh2 µ − cos2 φ), (2.3)

is associated with the conformal mapping from the exterior of the ellipse with major
axis l =2c coshµ0 to a semi-infinite strip, where µ = µ0 at the boundary of the ellipse

x + iy = c cosh(µ + iφ). (2.4)

The mapping concentrates grid points at the edges of the plate and casts the Navier–
Stokes equation onto a Cartesian grid, allowing an efficient solver. We use body-fixed
coordinates to eliminate spatial interpolation as the plate moves with respect to the
fluid. This turns out to be crucial for obtaining long trajectories with freely falling
plates.

The pressure and viscous force and torque on a stationary plate can be calculated
by integrating the stress tensor along the surface as described by Lugt & Haussling
(1974). The contributions from the plate acceleration to the pressure force, Fp , and the
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pressure torque, τp , are given by the a and Ω̇ terms in equations (2.5) and (2.6), and
the viscous force, Fν , and torque, τν , have the same form as for a stationary ellipse:

Fp = νρf c

∫
(sinh µ0 sinφ, − coshµ0 cosφ)

∂ω

∂µ
dφ +

1

4
πρf lha, (2.5)

τp =
1

2
νρf c2

∫
∂ω

∂µ
sin2 φ dφ +

1

32
πρf lh(l2 + h2)Ω̇, (2.6)

Fν = νρf c

∫
ω(− coshµ0 sinφ, sinhµ0 cos φ) dφ, (2.7)

τν = νρf c2 coshµ0 sinhµ0

∫
ω dφ, (2.8)

where ρf is the density of the fluid, h is the minor axis of the ellipse, and a and Ω̇

are the translational and the angular acceleration of the plate, respectively. The plate
dynamics follows Newton’s 2nd law, and the updated plate velocity is fedback to
the Navier–Stokes solver through the boundary conditions. With this computational
method it typically takes 10 to 20 times longer to resolve the free fall of a plate than
to compute the flow past the same plate undergoing a similar but prescribed motion
in which the feedback step is not needed. The simulations of freely falling plates dis-
cussed in the following are obtained using a 512 × 1024 grid and were repeated using
a 256 × 512 grid to check the computational accuracy. The results presented hold for
both resolutions.

3. Non-dimensional parameters and phase diagram
A freely falling plate is characterized by six dimensional parameters, i.e. the width of

the plate, l, the thickness of the plate, h, the density of the plate, ρs , the density of the
fluid, ρf , the kinematic viscosity of the fluid, ν, and the acceleration due to gravity,
g. From the six dimensional numbers we form three non-dimensional parameters,
i.e. the thickness-to-width ratio, β , the dimensionless moment of inertia, I ∗, and the
Reynolds number, Re. Specifically we define the thickness-to-width ratio of the plate
cross-section

β =
h

l
, (3.1)

and the dimensionless moment of inertia (Smith 1971)

I ∗ =
32I

πρf l4
, (3.2)

where πρf l4/32 is the moment of inertia per length about the axis of symmetry
of a cylinder of density ρf and diameter l. With rectangular cross-section we have
I ∗ =8ρsh(l2 + h2)/(3πρf l3) and with elliptical cross-section I ∗ = ρsh(l2 + h2)/(2ρf l3).
We define the Reynolds number using the width of the plate and the descent speed

Re =
lV

ν
. (3.3)

A simple estimate of the average descent speed, V , at intermediate Re gives

V ≈
√

2(ρs/ρf − 1)hg. (3.4)

The estimate is obtained by balancing the buoyancy-corrected gravity, (ρs − ρf )hlg,
with the quadratic drag, ρf lV 2/2. However, Willmarth et al. (1964) and Smith (1971)
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h (cm) β I ∗ Re 〈vx〉 (cm s−1) 〈vy〉 (cm s−1) 〈ω〉 (rad s−1)

0.162 1/5 0.48 737 14.2 ± 0.1 −8.1 ± 0.3 25.5 ± 0.3
0.162 1/6 0.39 1770 15.2 ± 0.7 −16.2 ± 2.9 16.1 ± 1.1
0.081 1/8 0.29 837 15.9 ± 0.3 −11.5 ± 0.5 14.5 ± 0.3
0.081 1/14 0.16 1147 19.8 ± 0.3 −9.0 ± 0.2 6.8 ± 0.1

Table 1. The thickness h, the non-dimensional parameters β , I ∗, and Re, and the measured
average horizontal velocity 〈vx〉, vertical velocity 〈vy〉, and angular velocity 〈ω〉. The Reynolds
number defined in equation (3.3) is obtained using 〈vy〉 and the kinematic viscosity of water

at 25◦ C, i.e. ν =0.0089 cm2 s−1. The averages for β = 1/5 are based on 10 trajectories with 8
periods each, the averages for β = 1/8 are based on 20 trajectories with 3 periods each, and
the averages for β = 1/14 are based on 10 trajectories with 5 periods each. For the plates with
β =1/6 and β = 1/14 we report the averages of the absolute values of vx and ω.

used the measured value of the average descent speed in the definition of the Reynolds
number and we shall follow their convention.

Smith (1971) found a phase diagram for rectangular plates that was qualitatively
similar to the phase diagram for circular disks measured by Willmarth et al. (1964).
The plates descend steadily when Re is below 100, and a transition from fluttering to
tumbling takes place with increasing I ∗ at larger values of Re. Smith (1971) measured
the transition value of I ∗ to be 0.2–0.3, whereas Belmonte et al. (1998) found a
transition value of 0.4 in their quasi-two-dimensional experiment.

4. Trajectories
The measured trajectories of aluminium plates with different thickness-to-width

ratio show a number of interesting characteristics. We use plates with rectangular
cross-section and thickness-to-width ratio between β = 1/14 and β =1/5. Both the
thickness and the width are therefore potentially important length scales, and we are
not in the range of small β studied by Willmarth et al. (1964) and Smith (1971).
Figure 2 shows the trajectories of three of the four experimental plates, and table 1
summarizes the experiment: a fluttering plate with β = 1/14, two tumbling plates
with β = 1/5 and β =1/8, respectively, and a plate with β = 1/6 showing apparently
chaotic motion.

4.1. Fluttering

Figure 2(a) shows the trajectory and the solid lines in figure 3 show the velocity com-
ponents for the fluttering plate with h = 0.081 cm and β = 1/14. The plate oscillates
from side to side as it descends with alternating gliding at low angle of attack and fast
rotational motion at the turning points. The centre of mass elevates at the turning
points, and the turning points are cusp-like since the translational motion almost
ceases.

The periodic motion of a fluttering plate is in general complex and not easy to des-
cribe by simple functions. However, it is evident from the measured translational velo-
city components shown in figure 3 that the fluttering of the plate with β = 1/14 is
dominated by the lowest harmonics. The trajectory is well-described by the simple
curve

x(t) =
V1

Ω
sin(Ωt), (4.1)

y(t) = −V2t − V3

2Ω
cos(2Ωt), (4.2)
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Figure 2. Measured plate trajectories: (a) the fluttering plate with h = 0.081 cm and β = 1/14,
(b) two apparently chaotic trajectories for the h = 0.162 cm and β = 1/6 plate, and (c) the
tumbling plate with h =0.162 cm and β =1/5. For clarity the two trajectories in (b) are
displaced from each other 0.5 cm horizontally and 1.5 cm vertically. The thick line segments
show the plate cross-sections with time intervals of 0.04 s in (a) and 0.025 s in (b) and (c).

where Ω, V1, V2, and V3 are constants. The constant Ω is the angular frequency of
the periodic motion, V2 is the average descent speed, and V1 and V3 describe the
amplitudes of the oscillations in vx and vy , respectively. Figure 4 shows the curve
(4.1) and (4.2) with the parameters Ω = 9.8 rad s−1, V1 = 32.6 cm s−1, V2 = 9.1 cm s−1,
and V3 = 14.5 cm s−1 obtained from the fits shown by the two dotted lines in figure 3.
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Figure 3. The measured velocities (solid lines) for fluttering with h = 0.081 cm and β = 1/14,
and the best fits (dotted lines) of the velocity expressions derived from equations (4.1) and
(4.2). (a) The horizontal velocity component vx , (b) the vertical velocity component vy , and
(c) the angular velocity ω. Both vx and vy are well-described by a single harmonics, whereas
three harmonics are needed to capture the main features of ω with three local extrema for
each half-period.

The frequency of the oscillatory component of the vertical velocity is twice the fre-
quency of the oscillatory horizontal velocity component because of the symmetry of
the fluttering motion. Any solution with periodic and symmetric side-to-side oscilla-
tions and constant average descent speed will therefore in general contain terms like
(4.1) and (4.2). A special example of such motion is that of a rigid object with elliptical
cross-section in a two-dimensional inviscid flow without gravity and circulation (Lamb
1945). The problem is described by Kirchhoff’s equations, and the small-amplitude
analytical solution consists of symmetric side-to-side oscillations. However, the phase
difference between the two oscillatory components and the rotational motion in the
ideal fluid problem are different from the fluttering trajectory of a thin plate falling
in a viscous fluid.

4.2. Tumbling

Figure 2(c) shows the trajectory and figure 5 the velocity components as functions of
time for the tumbling plate with h = 0.162 cm and β = 1/5. The plate is released at
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Figure 4. The simple analytical curve (4.1) and (4.2) describes the fluttering trajectory for the
plate with β = 1/14 shown in figure 2(a). The curve parameters are obtained by fitting the
translational velocity components as shown by the two dotted lines in figure 3.

an angle of 60◦ with the horizontal, and it settles into periodic motion after one to two
complete rotations. The periodic motion alternates between short and long gliding
segments, and the typical tumbling motion has a pronounced period-two structure.
The plate rotates fast at the turning points with angular velocities up to ω = 40 rad s−1

as shown in figure 5(c). The centre of mass elevates following the long gliding
segments whereas it does not elevate following the short gliding segments as shown in
figure 5(b).

4.3. Apparently chaotic motion

Figure 2(b) shows two typical trajectories for the h =0.162 cm and β = 1/6 plate with
apparently chaotic motion, and figure 6 shows the velocity components as functions
of time for plate (1) in figure 2(b). The motion in the transition region between
fluttering and tumbling alternates between fast complete rotations and segments
where the plate glides at low angle of attack for distances up to 15 times the plate
width. The two trajectories start with similar initial conditions, but the dynamics is
very sensitive to the initial conditions of the plate and the water. Both plates end
up almost at rest and oriented vertically after a few complete rotations, and in this
state it is undetermined whether the plates will flutter or tumble. Plate (1) therefore
glides to the left whereas plate (2) glides to the right. The apparently chaotic motion is
radically different from the periodic fluttering and tumbling with short transients, and
when the plates are almost at rest and oriented vertically the dynamics is much more
sensitive to experimental noise than in the periodic regions. We note that Field et al.
(1997) observed similar apparently chaotic motion for freely falling disks, whereas
apparently chaotic motion was not found in the experiment by Belmonte et al.
(1998).

In a separate paper we have presented direct numerical simulations at somewhat
lower Reynolds number showing a wide transition region between fluttering and
tumbling in which the plates flutter periodically but tumble once between consecutive
turning points (Andersen, Pesavento & Wang 2005). Within the framework of the
quasi-steady model we also analysed the transition between fluttering and tumbling
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Figure 5. Measured velocities as functions of time for the tumbling plate with h = 0.162 cm
and β = 1/5. (a) The horizontal velocity component, (b) the vertical velocity component, and
(c) the angular velocity. The plate elevates (vy is positive) after the long gliding segments
whereas it does not elevate after the short gliding segments. The local maxima for vy and ω
almost coincide, and we note that vx is large and ω is small during the long gliding segments.

for plates with small thickness-to-width ratio for which the dimensionless moment of
inertia is the relevant control parameter. We identified the transition in the quasi-
steady model as a heteroclinic bifurcation, and using the direct numerical simulations
we found that the transition between fluttering and tumbling does not always take
place via a sequence of chaotic solutions. These results could suggest that the appa-
rently chaotic trajectories are observed in the present experiment because the system
is very sensitive to noise in the transition region and that the trajectories only appear
to be chaotic due to experimental noise.

4.4. Comparison between experiment and direct numerical simulations

To validate and check the measurements and the direct numerical simulations we
compare measured and computed trajectories for the tumbling plate with β = 1/8.
We keep the width and the thickness the same in the experiment and the simulations,
but the plate in the experiment has rectangular cross-section whereas the plate in the
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Figure 6. Measured velocities as functions of time for the plate with h = 0.162 cm and β =
1/6 displaying irregular motion, see trajectory (1) in figure 2(b). (a) The horizontal velocity
component, (b) the vertical velocity component, and (c) the angular velocity. The irregular
motion involves long gliding segments at low angle of attack with descent velocities up to vy =

−50 cm s−1 followed by centre-of-mass elevation with upward velocities up to vy =20 cm s−1.

simulations has elliptical cross-section to take advantage of the conformal mapping
(2.4) with no singular corners. Both the mass and the moment of inertia are therefore
smaller in the simulations in comparison with the experiment. With the rectangular
cross-section we have I ∗ =0.29 and Re = 837 and with the elliptical cross-section
I ∗ =0.17 and Re= 1025. The measurements were repeated 20 times with initial
conditions set by releasing the plate at an angle of 45◦ with the horizontal, and the
simulations were carried out with the five different sets of initial conditions (I–V)
specified in table 2.

Figure 7(a) shows the plate trajectories and figure 7(b) shows vx versus vy for
two representative trajectories, one measured and one computed. The trajectories
are qualitatively similar, but the period-two structure is more pronounced in the
simulations as shown in figure 7(b). We ascribe the differences between the trajectories
to the differences between the rectangular and the elliptical cross-section. The average
velocity components, angular velocity, and angle of descent are reported in table 3.
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β Run vx (cm s−1) vy (cm s−1) ω (rad s−1) θ (deg.)

1/8 I 0.00 0.00 0.00 11.5
– II 0.00 0.00 −16.50 −11.5
– III −8.92 −8.92 0.00 45.3
– IV −17.90 −17.90 0.00 45.3
– V −35.70 53.40 0.00 45.3

1/4 VI 0.00 0.00 0.00 11.5
– VII 0.00 0.00 −2.90 −11.5

Table 2. Initial conditions for the plates in the direct numerical simulations. I–V: β = 1/8,
h =0.081 cm, ρf = 1.0 g cm−3, ρs = 2.7 g cm−3, and ν = 0.0089 cm2 s−1; VI–VII: β = 1/4, h =

0.05 cm, ρf = 1.0 g cm−3, ρs = 2.0 g cm−3, and ν = 0.0089 cm2 s−1.

〈vx〉 (cm s−1) 〈vy〉 (cm s−1) 〈ω〉 (rad s−1) Descent angle (deg.)

Experiment: 15.9 ± 0.3 −11.5 ± 0.5 14.5 ± 0.3 35.8 ± 1.3
Simulation: 15.6 ± 0.2 −7.4 ± 0.3 18.0 ± 0.3 25.3 ± 0.9

Table 3. Average velocities 〈vx〉 and 〈vy〉, angular velocity 〈ω〉, and angle of descent for the
tumbling plate with β = 1/8 in the experiment (rectangular cross-section) and in the direct
numerical simulations (elliptical cross-section) with initial conditions (I–V) in table 2.
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Figure 7. Tumbling dynamics with β = 1/8 from the experiment and the direct numerical
simulation with initial condition I in table 2. (a) Computed and measured trajectories labelled
(1) and (2), respectively, and (b) vx versus vy: simulation (dotted line) and experiment (solid
line). The trajectories are qualitatively similar, and we ascribe the quantitative differences to
the difference in geometry between the rectangular and the elliptical cross-section.
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Figure 8. Periodic solutions and dependence on initial conditions investigated using direct
numerical simulations: (a) trajectory and (b) vx versus vy for a tumbling plate with β = 1/8,
Re =1025, and I ∗ = 0.17 with initial condition I (solid line) and II (dotted line) from table 2;
(c) trajectory and (d) vx versus vy for a tumbling plate with β =1/4, Re= 102, and I ∗ = 0.36
with initial condition VI (solid line) and VII (dotted line) from table 2.

The average tumbling frequency in the simulations is 25% higher than the average
tumbling frequency in the experiment. The average angle of descent relative to the
horizontal is 25.3◦ in the simulations and 35.8◦ in the experiments, and the average
descent velocity is about 50% larger in the experiments than in the simulations. The
standard deviations are comparable in the experiments and in the simulations as
reported in table 3.

4.5. Sensitivity to initial conditions

Numerically we investigate the dependence on initial conditions by specifying different
initial conditions of the plate as summarized in table 2. Figure 8(a) shows the
trajectories of the plate with β = 1/8 in two simulations with 10 complete periods
and initial conditions I and II from table 2. The initial transients of the two runs are
very different, as expected, but after two complete rotations the two trajectories span
the same region in the vx versus vy plot and exhibit similar period-two dynamics as
shown in figure 8(b). However, the initial conditions have significant importance in
some cases. The apparently chaotic trajectories shown in figure 2(b) depend sensitively
on the initial conditions, and periodic solutions can also depend sensitively on the
initial conditions as shown in figures 8(c) and 8(d). One trajectory (solid line) displays
a pronounced period-two structure whereas the other trajectory (dotted line) displays
a period-one structure.
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Figure 9. The vorticity around the tumbling plate with β =1/8, I ∗ = 0.17, and Re= 1025. The
grid resolution was 512 × 1024. Positive vorticity in red and negative vorticity in blue: (a) onset
of the wake instability; (b) the instability is fully developed, and the plate has initiated its first
turn; (c, d) a vortex pair is formed as the plate completes its turn; (e) the plate glides for a
short distance; (f –h) the plate makes a second 180◦ turn; and (i) the plate resumes gliding.

5. Vortex shedding and wake structure
5.1. Tumbling

The wake of the tumbling plate with β = 1/8 consists of vortices shed at the turning
points plus vortex pairs formed by the breakup of the extended wake formed during
gliding. Figure 9 shows snapshots of the vorticity field around the plate. The vortex
pair in the top left corner of each frame was shed after the initial fluttering transient.
The plate starts gliding after the transient, and the trajectory alternates between short
and long gliding segments separated by 180◦ rotations. As the plate initiates a turn,
the wake developed during the previous gliding segment becomes unstable and breaks
up into vortices with a characteristic size of half the plate width. In addition, two
vortices are shed when the plate undergoes a 180◦ rotation and resumes gliding. The
short gliding segments are similar to the long gliding segments except that the wake
of the plate has less time to develop and generates fewer vortices as it breaks up.

5.2. Fluttering

Figure 10 shows the vorticity field around a fluttering plate with elliptical cross-
section, β = 1/18, I ∗ = 0.057, and Re = 412. Numerically we have not resolved the
β = 1/14 fluttering, and to illustrate the wake structure in fluttering we consider an
example at somewhat lower Reynolds number. The vortex dipole shed during the
initial transient is visible at the top left corner in figure 10(a). A similar dipole is
shed during the transient of the tumbling plate shown in figure 9. In both cases the
plate glides at small angle of attack after the transient until it starts to pitch up and
approach the turning point. As the plate pitches up it decelerates, its wake becomes
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Figure 10. The vorticity around the fluttering plate with β = 1/18, I ∗ = 0.057, and Re= 412.
The grid resolution was 512 × 1024. Positive vorticity in red and negative vorticity in blue:
(a) the plate glides at small angle of attack; (b) the plate pitches up and its centre of mass
elevates; (c) the plate slows down; (d–f ) the plate turns and starts to shed its old leading edge
vortex (red); (g, h) the old trailing edge vortex (blue) is shed; (i) the plate resumes gliding.

unstable, and its centre of mass elevates. The old leading- and trailing-edge vortices
are shed as the plate resumes gliding.

6. Fluid forces: measurements and quasi-steady model
6.1. Experiment and direct numerical simulations

We extract the fluid force, F, and the fluid torque, τ , per unit length on the plate
directly from the measured accelerations, i.e. Fx = m v̇x , Fy = mv̇y + m′ g, and τ = I θ̈ ,
where m = ρshl, m′ = (ρs − ρf )hl, and I = ρshl(l2 +h2)/12. Figure 11 shows Fx , Fy ,
and τ as functions of the angle θ . The period of oscillation of the plate with elliptical
cross-section is shorter than the period of oscillation of the rectangular plate, and
for comparison we show the force components and the torque as functions of θ

and not as functions of time directly. The measured and the computed forces have
qualitatively similar angular dependence and the peak values are comparable. The
buoyancy-corrected gravity is (ρs − ρf )lhg = 88 g s−2 for the rectangular plate and
π(ρs − ρf )lhg/4 = 69 g s−2 for the plate with elliptical cross-section. The measured
torque is approximately twice as large as the computed torque, but we note that
the moment of inertia of the rectangular plate is also approximately twice as large as
the moment of inertia of the plate with elliptical cross-section. The computed and the
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Figure 11. The fluid force components and the fluid torque as functions of the angle θ for
the tumbling plates with β = 1/8. (a–c) experiment and (d–f ) direct numerical simulation with
initial condition I. In both cases we use units where m′ = (ρs − ρf )hl. The measured and the
computed force and torque are qualitatively similar and we ascribe the quantitative differences
between measurements and computations to the differences in geometry.

measured torque normalized by the moment of inertia are therefore comparable. The
net fluid force acts close to the centre and the arm of the fluid force is only about
1/100 of the width of the plate. The fluid torque is very small in comparison with
the fluid torque on a glider with fixed angle of attack as shown in figure 12 for both
small and large angle of attack.

6.2. Quasi-steady force model

To quantify the main contributions to the fluid forces we consider a phenomenological
model based on ordinary differential equations that without viscous effects reduce
to Kirchhoff’s equations for a solid body in an inviscid and irrotational flow (Lamb
1945). We write the equations in the coordinate system co-rotating with the plate, and
we define vx ′ , vy ′ , and θ as shown in figure 13. The velocity components vx ′ and vy ′ are
related to the horizontal velocity component, vx , and the vertical velocity component,
vy , by the transformation: vx = vx ′ cos θ − vy ′ sin θ and vy = vx ′ sin θ + vy ′ cos θ .

Our model consists of the following set of coupled ordinary differential equations:

(m + m11)v̇x ′ = (m + m22)θ̇vy ′ − ρf Γ vy ′ − m′g sin θ − F ν
x ′, (6.1)

(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + ρf Γ vx ′ − m′g cos θ − F ν
y ′, (6.2)

(I + Ia)θ̈ = (m11 − m22)vx ′vy ′ + lτ ρf Γ

√
v2

x ′ + v2
y ′ − τ ν. (6.3)

The terms mθ̇vy ′ and −mθ̇vx ′ arise due to the co-rotating coordinate system, and
the terms involving m11, m22, and Ia are due to added mass effects. The added mass
coefficients m11 and m22, and the added moment of inertia, Ia , are given by inviscid
theory (Sedov 1965). We use the coefficients for a plate with elliptical cross-section:

m11 =
π

4
ρf h2, m22 =

π

4
ρf l2, Ia =

π

128
ρf (l2 − h2)2. (6.4)
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Figure 12. The computed lift and fluid torque on steadily translating plates with β = 1/8 and
fixed angle of attack, α, as functions of the distance travelled. The plates were impulsively
started and the Reynolds numbers based on the width and the translational speed were 103.
(a, b) low angle of attack α = 10◦ and (c, d) high angle of attack α = 40◦. The torques are one
to two orders of magnitude larger than the torques on the freely falling plates in figure 11.
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Figure 13. The velocity components vx ′ and vy ′ in the laboratory reference frame are defined
with respect to the coordinate system following the rotation of the body, whereas vx and vy

are the horizontal and the vertical velocity component in the laboratory reference frame, respec-
tively. The angle of attack, α, satisfies α ∈ [−π/2, π/2] and it is negative in the example sketched.

The lift is orthogonal to the direction of motion and proportional to the circula-
tion, Γ = Γ (vx ′, vy ′, θ̇), and the drag, Fν = Fν(vx ′, vy ′, θ̇), and the dissipative fluid
torque, τ ν = τ ν(vx ′, vy ′, θ̇), are opposite to the direction of translation and rotation, res-
pectively. In classical aerodynamics for wings with fixed angle of attack the fluid forces
are conveniently decomposed into lift and drag. The situation is more complicated in
fluttering and tumbling, since the centre-of-mass velocity can point in any direction
and almost vanishes at the turning points, where the angle of attack is large and the
magnitudes of lift and drag are comparable. However, it is nevertheless convenient to
use lift and drag terms to model the fluid forces in a quasi-steady model.
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The fluid circulation around the plate is not specified in Kirchhoff’s equations and
it must be modelled to complete equations (6.1)–(6.3). The plate dynamics is charac-
terized by two velocity scales, i.e. the translational velocity and the rotational velocity
of the plate, and we assume that the circulation depends on both velocities. We follow
Pesavento & Wang (2004) and write the circulation as the sum of a term proportional
to the translational speed and a term proportional to the angular velocity of the plate

Γ = − 1
2
CT l

√
v2

x ′ + v2
y ′ sin 2α + 1

2
CRl2θ̇ , (6.5)

where α is the angle of attack defined in figure 13, and CT and CR are non-dimensional
constants. By definition we have α ∈ [−π/2, π/2] and the sign convention described in
the caption of figure 13. In terms of vx ′ , vy ′ , and θ̇ we write the circulation as follows:

Γ = −CT l
vx ′vy ′√
v2

x ′ + v2
y ′

+
1

2
CRl2θ̇ . (6.6)

At low angles of attack the translational lift term reduces to the classical Kutta–
Joukowski lift for a translating wing with constant angle of attack, and at high
angles of attack it takes stall into account (Wang, Birch & Dickinson 2004). The
rotational lift term has the same form as the lift on a pitching plate at zero angle of
attack for which CR = π as calculated by Munk (1925). In the quasi-steady model we
assume that the functional form is valid in general, but we determine CR by fitting
the measured lift.

The present model of the circulation is different from previous models. Mahadevan
(1996) assumed a constant circulation, and Tanabe & Kaneko (1994) and Belmonte
et al. (1998) assumed that Γ = −πl(v2

x ′ + v2
y ′)1/2 sinα, i.e. the classical Kutta–Joukowski

model. We show in the following that neither of the previous lift models can account
for the measured lift, and that the rotational lift dominates in tumbling.

The term lτ ρf Γ (v2
x ′ + v2

y ′)1/2 describes the torque due to the translational and
rotational lift. For a plate with elliptical cross-section in an ideal fluid with constant
circulation we have lτ = 0, and for a translating wing at low angle of attack satisfying
the Kutta condition we have lτ = l/4. In § 6.4 we compare the contributions to the
fluid torque with the measured torque and discuss the value of lτ further.

We describe the drag using a standard model, which is valid for a translating wing
with constant angle of attack at intermediate Reynolds number (Wang et al. 2004).
The drag model is quadratic in the translational velocity and it has the following
dependence on the angle of attack:

Fν = 1
2
ρf l[CD(0) cos2 α + CD(π/2) sin2 α]

√
v2

x ′ + v2
y ′(vx ′, vy ′), (6.7)

where CD(0) and CD(π/2) are the drag coefficients at α =0 and α = π/2, respectively.
The model of the pressure contribution to the drag can be motivated theoretically by
assuming that the local drag on the plate is proportional to the square of the local
velocity component normal to the plate

dFν = 1
2
ρf CD(π/2)|vn|vn(− sin θ, cos θ) dr, (6.8)

where we write the drag components in the laboratory coordinate system and define
vn as the local velocity component normal to the face of plate, i.e. vn = vy ′ + rθ̇ . We
use −l/2 � r � l/2 to denote the position of a plate segment relative to the centre.
In the absence of rotation we obtain the term used in equation (6.7) to model the
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Figure 14. Measured fluid force (black), total quasi-steady force (green), translational lift
(blue), and rotational lift (red): (a) tumbling plate with β = 1/5 and (b) fluttering plate with
β = 1/14. In (a) the translational lift points down at (1) and (4) and up at (2), (3), and (5), and
the quasi-steady model underestimates the fluid forces at (1) after the short gliding segments.

pressure contribution to the drag

Fν = 1
2
ρf CD(π/2)l sin2 α

√
v2

x ′ + v2
y ′(vx ′, vy ′). (6.9)

In the following we apply the local drag term (6.8) to describe the dissipative fluid
torque

dτ ν = 1
2
ρf CD(π/2)|vn|vnr dr, (6.10)

and by integration we obtain the dissipative torque model

τ ν=1
2
ρf CD(π/2)

∫ l/2

−l/2

|vn|vnr dr. (6.11)
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Figure 15. Measured lift (solid line), total quasi-steady lift (dotted line), and quasi-steady lift
without added mass (dashed line): (a) tumbling with β = 1/5, (b) apparently chaotic motion
with β = 1/6, (c) tumbling with β = 1/8, and (d) fluttering with β =1/14. Added mass effects
give negligible contributions to the lift. In (d) the sign of the lift defined in equation (6.12)
depends on whether the plate moves left or right during the fluttering motion.

β CT CR CD(0) CD(π/2)

1/5 1.0 1.4 0.28 2.0
1/6 1.0 1.2 0.15 2.0
1/8 1.0 1.0 0.13 2.0
1/14 1.0 1.1 0.08 2.0

Table 4. Lift and drag coefficients in the quasi-steady model.

The torque term vanishes for a purely translating plate, and in the absence of
translation we can directly perform the integral: τ ν = (1/64)ρf CD(π/2)l4|θ̇ |θ̇ . In § 6.4
we compare this dissipative torque with the fluid torque inferred from experiment.
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Figure 16. Measured (solid line), translational (dotted line), and rotational lift (dashed line):
(a) tumbling with β = 1/5 and (b) fluttering with β = 1/14. In (a) the average value of the trans-
lational lift is small and its functional form is markedly different from the measured lift, whereas
the rotational lift captures the main features of the measurements. In (b) both translational
and rotational lift have significant contributions and the functional forms are similar.

There are two main types of effects which are not accounted for in the quasi-steady
approximation, i.e. unsteady corrections to specific force terms and effects due to the
interaction of the plate with existing vortex structures. The first type of effects include
development of lift during acceleration from rest (Wagner 1925; Pullin & Wang 2004)
and unsteady forces due to vortex shedding when a plate is translating at high angle
of attack as shown in figure 12. The second type of effects can be significant when
the quasi-steady approximation is applied to problems like hovering flapping flight in
which a wing is oscillated back and forth and moves into its own wake (Dickinson,
Lehmann & Sane 1999). However, a freely falling plate does not interact with its own
wake during gliding and such effects are of little significance except at the turning
points.

6.3. Measured and quasi-steady fluid forces

Figure 14 shows the measured and the quasi-steady force vectors at different instances
during tumbling and fluttering. The quasi-steady model describes the measured fluid
forces well during most parts of the trajectories, but underestimates the fluid forces
immediately after the 180◦ rotations following the short gliding segments at position
(1) in figure 14(a). This is to be expected since the plate velocities are small and the
wake effects are strong (see figure 9(h) for illustration of the wake structure).

Figures 15 and 17 show the measured and the quasi-steady lift and drag as functions
of time. We decompose the buoyancy-corrected fluid force, F, into lift and drag,
F = L + D, where we define the lift, L, the drag, D, and their magnitudes L and D
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Figure 17. Measured drag (solid line), total quasi-steady drag (dotted line), and quasi-steady
drag without added mass (dashed line): (a) tumbling with β = 1/5, (b) apparently chaotic
motion with β = 1/6, (c) tumbling with β = 1/8, and (d) fluttering with β = 1/14. The relative
contributions of added mass effects to the drag are significant, but the resulting thrust peaks
(negative drag) are not always observed experimentally as for tumbling in (c).

as follows:

L = (ev × F) × ev = Lez × ev, D = (F · ev) ev = −D ev. (6.12)

We let ev denote a unit vector in the direction of the centre-of-mass velocity and ez a
unit vector in the z-direction orthogonal to the plane of motion. Positive and negative
values of D correspond to drag and thrust, respectively.

The quasi-steady model includes four lift terms, i.e. translational and rotational lift
as shown in equation (6.6) with coefficients CT and CR , respectively, and translational
and rotational added mass terms. We use CT = 1.0 in all four experimental cases
and fit the measured lift to obtain the value of CR . The procedure gives the lift
coefficients summarized in table 4, and the quasi-steady lift plotted together with



Unsteady aerodynamics of fluttering and tumbling plates 87

0.50 0.75 1.00 1.25 1.50
–0.5

0

0.5

τ 
(m

′ g
 l

)

(a)

0 0.5 1.0 1.5
–0.5

0

0.5

τ 
(m

′ g
 l

)

(c)

0.2 0.4 0.6 0.8 1.0 1.2
–0.5

0

0.5

τ 
(m

′ g
 l

)

(e)

1.0 1.5 2.0 2.5 3.0
–0.5

0

0.5

t (s)

τ 
(m

′ g
 l

)

(g)

0.50 0.75 1.00 1.25 1.50
–0.2

0

0.2

(b)

0 0.5 1.0 1.5
–0.2

0

0.2

(d )

0.2 0.4 0.6 0.8 1.0 1.2
–0.2

0

0.2

( f )

1.0 1.5 2.0 2.5 3.0
–0.2

0

0.2

t (s)

(h)

Figure 18. Measured torque and quasi-steady torque contributions. Measured torque (black),
the term (m11 − m22)vx ′vy ′ from ideal fluid theory (magenta), the term −Iaθ̈ related to the
added moment of inertia (cyan), the torque from translational lift (blue), the dissipative torque
(red), and the sum of the torque from translational lift and dissipative effects (green): (a, b)
tumbling with β = 1/5, (c, d) apparently chaotic motion with β =1/6, (e, f ) tumbling with
β = 1/8, and (g, h) fluttering with β = 1/14.

the measured lift in figures 14 and 15. In tumbling the translational lift alternates
between pointing up and down with respect to the plate velocity as the plate pitches
up at points marked (2), (3), and (5) and down at points marked (1) and (4) as shown
in figure 14(a). The average vertical component of the translational lift is thus only
5% of the buoyancy-corrected gravity, and an unrealistically high translational lift
coefficient of CT = 20 would be required for the quasi-steady forces to balance the
buoyancy-corrected gravity if rotational lift were neglected. In tumbling the quality
of the fit of the lift is therefore not very sensitive to the value of CT , and with values
of CT = 0.5 and CT = 1.5 we obtain similar values of CR as with CT =1.0. For the
fluttering plate shown in figure 14(b) the translational and rotational lift balance
30% and 70% of the buoyancy-corrected gravity, respectively. We note that the lift
contribution of added mass is small for both tumbling and fluttering in comparison
with the measured lift as shown in figure 15.

The difference between the rotational and the translational lift is further illustrated
in figure 16 which shows the translational and the rotational lift contributions together
with the measured lift as functions of time. Figure 16(a) shows tumbling with β = 1/5
for which the functional form of the rotational lift resembles the functional form of
the measured lift, whereas the translational lift has a markedly different functional
form with approximately zero average. Figure 16(b) shows fluttering with β = 1/14 for
which both the rotational and the translational lift provide important contributions
to the total lift and the functional forms are similar.
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We model the drag using equation (6.7) with CD(π/2) = 2.0 and CD(0) determined by
the best possible fit to the measured drag. We expect that the drag model performs well
during gliding at small angle of attack, see figure 14(b) positions (3)–(7), whereas we
expect that it does not capture the wake-dominated fluid forces at the turning points,
see figure 14(b) positions (1) and (8). The values of CD(0) are in the range 0.1–0.3, and
the value of CD(0) decreases with decreasing thickness-to-width ratio as expected. The
quasi-steady model predicts added mass effects to overcome viscous drag and result
in a net thrust at the turning points for the plates with β =1/5, β = 1/6, and β = 1/8
as shown in figure 17. A net thrust is also observed experimentally with β =1/5 and
β = 1/6, but the magnitude is smaller. An estimate of the added mass coefficients based
on the thrust peaks yields coefficients about 50% smaller than the inviscid values.

6.4. Measured and quasi-steady fluid torque

Figure 18 shows the measured fluid torque (black) in comparison with the torque term,
(m11 − m22)vx ′vy ′ , from ideal fluid theory (magenta), the torque term, −Iaθ̈ , related to
the added moment of inertia (cyan), the torque from the translational lift acting half-
way between the leading edge and the centre of the plate (blue), the dissipative torque
term (red), and the sum of the torque from translational lift and dissipation (green).

The ideal-fluid torque (m11 − m22)vx ′vy ′ is one to two orders of magnitude larger
than the measured fluid torque, and the torque term −Iaθ̈ is comparable in magnitude
to the total measured fluid torque. The forces that produce the (m11 − m22)vx ′vy ′-term
in ideal-fluid theory do not give rise to a net fluid force on the plate, and it is therefore
possible for the ideal-fluid torque to be large although the forces due to added mass
effects are small. In other words we observe that Kirchhoff’s equations in the absence
of circulation do not account for the measured lift and overestimate the fluid torque
significantly.

The translational and the rotational lift give rise to fluid torque terms, but the
values of lτ are in general different for the two lift terms and theoretical values are
only known in special cases, e.g. lτ = 0 for a plate with elliptical cross-section in
an ideal fluid with constant circulation and lτ = l/4 for a translating wing at low
angle of attack satisfying the Kutta condition. Figure 18 shows the torque from the
translational lift with the assumption that the force acts halfway between the leading
edge and the centre of the plate, i.e. lτ = l/4 as in the case of a wing translating
with constant and low angle of attack. The magnitude of the translational torque
term is between two and four times larger than the magnitude of the measured fluid
torque in the four experimental cases, and for fluttering the translational torque term
clearly overestimates the measured fluid torque. With the assumption that lτ = l/4
also for the rotational lift we overestimate the measured torque by one to two orders
of magnitude. On the other hand the magnitude of the dissipative torque (6.11) with
CD(π/2) = 2.0 is comparable with the magnitude of the measured fluid torque in the
four experimental cases, and the term provides a possible model of the dissipative
part of the fluid torque.

7. Conclusion and outlook
We have presented an experimental and numerical study of the unsteady aero-

dynamics of freely falling plates in a quasi-two-dimensional flow. We have shown that
the fluid forces for both fluttering and tumbling plates are markedly different from
the fluid forces on a simple gliding airfoil with constant angle of attack. In parti-
cular, the lift is dominated by the rotational velocity of the plate, so that a quasi-steady
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model with only translational lift is unable to explain the observed plate trajectories.
With the exception of the neighbourhoods of the cusp-like turning points, the fluid
forces are described well by our revised quasi-steady model and dominated by
rotational lift. The rotational lift provides the main mechanism of coupling between
plate translation and rotation, and added mass effects predicted by inviscid theory
are small in comparison with the translational and the rotational lift terms and play
a negligible role in the plate dynamics.

The total fluid force on a freely falling plate acts close to the centre of mass at
about 1/100 of the width from the centre and results in a torque which is one to two
orders of magnitude smaller than the torque on a plate translating at the same speed.
The quasi-steady model correctly predicts the magnitude of the torque in direct nume-
rical simulations of plates translating steadily with constant and low angle of attack,
where the pressure force acts approximately halfway between the leading edge and
the plate centre. In contrast the fluid torque on a freely falling plate does not build
up to a similarly large value, since the plate is free to rotate, and the fluid torque
therefore depends sensitively on the precise locations of vortices and low-pressure
regions relative to the plate. For these reasons it is more difficult to apply the quasi-
steady approximation to model the fluid torque than to model the fluid forces on
freely falling plates.

By varying the three non-dimensional parameters, i.e. the thickness-to-width ratio,
the dimensionless moment of inertia, and the Reynolds number, we observed periodic
fluttering, periodic tumbling, and apparently chaotic motion. Experimentally we found
a transition from fluttering to tumbling with increasing thickness-to-width ratio, and
we observed apparently chaotic motion and sensitivity to initial conditions in the
transition region. In a separate paper we have investigated the transition further
using direct numerical simulations and the quasi-steady model (Andersen et al. 2005).
We refer to this paper for discussion of the aerodynamics in the transition region and
analysis of the bifurcation between fluttering and tumbling in the quasi-steady model.

Far from the transition value, the plates flutter or tumble after short transients
and display periodic motion with alternating gliding at low angle of attack and fast
rotation and centre-of-mass elevation at the turning points. The periodic dynamics
observed experimentally was independent of initial conditions. However, with special
choices of the non-dimensional parameters we found numerically that the final
periodic solution depends on the initial conditions. It will be interesting to study
the dependence on initial conditions further and to clarify under what conditions
periodic solutions of freely falling plates depend on initial conditions and whether or
not chaotic dynamics is possible.

We thank Steve Keast for technical assistance with the construction of the experi-
mental setup and Sheng Xu for many valuable comments and suggestions. This work
was supported by NSF, ONR, AFOSR, and the Packard Foundation.
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